Физика сплошных сред | страница 46



является инвариантом. Таким образом, фаза волны есть инвариант и формулу (33.6) можно записать в виде

Однако сейчас нам такие хитрости не понадобятся.

Для синусоидального по­ля Е, подобного выражению (33.6), производная dE/дt — это то же самое, что и iwE, a дЕ/дх — то же, что и ik>xE, и аналогично для остальных компо­нент. Вы видите, чем удобна форма (33.6): когда мы работаем с дифференциальными уравнениями, то дифференцирование заменяется простым умножением. Другое полезное качество состоит в том, что операция С=(д/дx), (д/ду), (д/дz) заменяется тремя умножениями (-ik>x,-ik>y , -ik>z). Но эти три множителя преобразуются как компоненты вектора k, так что оператор С заменяется умножением на

Правило остается справедливым для операции С в любой ком­бинации, будь то градиент, дивергенция или ротор. Например, z-компонента СXЕ равна

Если и Е>уи Е>хизменяются как e>->i>k>·>r, то мы получаем

-ik>xE>y+ik>yE>x,

что представляет, как вы видите, z-компоненту —ikXЕ.

Таким образом, мы получили очень полезный общий закон, что в любом случае, когда вам нужно взять градиент от вектора, который изменяется, как волна в трехмерном пространстве (а они в физике играют важную роль), эту операцию вы можете проделать быстро и почти без всяких раздумий, если вспомните, что оператор С эквивалентен умножению на —ik.

Например, уравнение Фарадея

СXЕ=дB/дt

превращается для волны в

— ikXЕ=-iwB. Оно говорит, что

В=kXE/w. (33.9)

Это соответствует результату, найденному ранее для волн в пу­стом пространстве, т. е. что вектор В в волне направлен под прямым углом к вектору Е и направлению распространения волны. (В пустом пространстве w/k=с.) Знак в уравнении (33.9) вы можете проверить, исходя из того, что k является на­правлением вектора Пойнтинга S=e>0c>2(EXВ).

Если вы примените то же самое правило к другим уравне­ниям Максвелла, то снова получите результаты последней главы, в частности

Но раз уже это известно нам, давайте не будем проделывать все сначала.

Если вы хотите поразвлечься, можете попытаться решить та­кую устрашающую задачу (в 1890 г. она предлагалась студен­там на выпускных экзаменах): решите уравнения Максвелла для плоской волны в анизотропном кристалле, т. е. когда поля­ризация Р связана с электрическим полем Е через тензор поля­ризуемости. Конечно, в качестве ваших осей вы выберете глав­ные оси тензора, так что связи при этом упростятся (тогда Р>х=a>aЕ>х, Р>у=a>bЕ>у, a P>z=a>cE>z), но направление волны и ее поляризация пусть останутся произвольными. Вы должны найти соотношение между