Физика сплошных сред | страница 17
Связь между Р и Е в уравнении (31.4) можно записать в более компактном виде:
где под значком i понимается какая-то из трех букв х, у или z, а суммирование ведется по j=x, у и z. Для работы с тензорами было придумано много специальных обозначений, но каждое из них удобно для ограниченного класса проблем. Одно из таких общих соглашений состоит в том, что можно не писать знака суммы (S) в уравнении (31.5), понимая при этом, что когда один и тот же индекс встречается дважды (в нашем случае j), то нужно просуммировать по всем значениям этого индекса. Однако, поскольку работать с тензорами нам придется немного, давайте не будем осложнять себе жизнь введением каких-то специальных обозначений или соглашений.
§ 3. Эллипсоид энергии
Потренируемся теперь в обращении с тензорами. Рассмотрим такой интересный вопрос: какая энергия требуется для поляризации кристалла (в дополнение к энергии электрического поля, которая, как известно, равна e>0Е>2/2 на единицу объема)? Представьте на минуту атомные заряды, которые должны быть перемещены. Работа, требуемая для перемещения одного такого заряда на расстояние dx, равна qE>xdx, а если таких зарядов в единице объема содержится N штук, то для перемещения их требуется работа qE>xNdx. Но qNdx равно изменению дипольного момента единицы объема dP>x. Так что работа, затраченная на единицу объема, равна
E>xdP>x.
Складывая теперь работы всех трех компонент, найдем, какой должна быть работа в единице объема:
E·dP.
Но поскольку величина Р пропорциональна Е, то работа, затраченная на поляризацию единицы объема от 0 до Р, равна интегралу от E·dP. Обозначая ее через и>р, можно написать
Теперь можно воспользоваться уравнением (31.5) и выразить Р через E. В результате получим
Плотность энергии и>р — величина, не зависящая от выбора осей, т. е. скаляр. Таким образом, тензор обладает тем свойством, что, будучи просуммирован по одному индексу (с вектором), он дает новый вектор, а будучи просуммирован по обоим индексам (с