Электродинамика (2) | страница 13
где теперь z>эфф— это некоторое комплексное число, алгебраическая функция всех элементов цепи. (Если в цепи нет никаких
генераторов, кроме упомянутого, то в формуле не будет добавочной части, не зависящей от e.) Но получившееся уравнение — это как раз то, которое нужно было бы написать для схемы фиг. 22.15, б. И покуда нас интересует только то, что происходит слева от зажимов а и b, до тех пор обе схемы фиг. 22.15 эквивалентны.
Фиг. 22.15. Любая сеть пассивных элементов с двумя выводами эквивалентна эффективному импедансу.
Фиг. 22.16. Любую сеть с двумя выводами можно заменить генератором, последовательно соединенным с импедансом.
И поэтому можно сделать общее утверждение, что любую цепь пассивных элементов с двумя выводами можно заменить одним-единственным импедансом z>эфф не изменив в остальной части цепи ни токов, ни напряжений. Утверждение это, естественно, всего лишь мелкое замечание о том, что следует из правил Кирхгофа, а в конечном счете — из линейности уравнений Максвелла.
Идею эту можно обобщить на схемы, в которые входят как генераторы, так и импедансы. Представьте, что мы глядим на эту схему «с точки зрения» одного из импедансов, который мы обозначим z>n (фиг. 22.16, а). Если бы решить уравнение для тока, мы бы увидели, что напряжение V>nмежду зажимами а и b есть линейная функция I, которую можно записать в виде
(22.22)
Здесь А и В зависят от генераторов и импедансов в цепи слева от зажимов. Например, в схеме, показанной на фиг. 22.13, мы находим V>1=I>1z>l>. Это можно переписать [используя (22.20)] в виде
(22.23)
Тогда полное решение мы получаем, комбинируя это уравнение с уравнением для импеданса z>1 т. е. с V>1=I>1z>1, или в общем случае комбинируя (22.22) с
Если мы рассмотрим теперь случай, когда z>n подключается к простой цепи из последовательно соединенных генератора и импеданса (см. фиг. 22.15, б), то уравнение, соответствующее (22.22), примет вид
что совпадает с (22.22), если принять S>эфф=A и z>эфф=B. Значит, если нас интересует лишь то, что происходит направо от выводов а и b, то произвольную схему фиг. 22.16 можно всегда заменить эквивалентным сочетанием генератора, последовательно соединенного с импедансом.
§ 5. Энергия
Мы видели, что для создания в индуктивности тока I надо из внешней цепи доставить энергию U=>1/>2LI>2. Когда ток спадает до нуля, эта энергия уводится обратно во внешнюю цепь.
В идеальной индуктивности механизма потерь энергии нет. Когда через индуктивность течет переменный ток, энергия перетекает то туда, то сюда — от индуктивности к остальной части цепи и обратно, но средняя скорость, с какой энергия передается в цепь, равна нулю. Мы говорим, что индуктивность — недиссипативный элемент, в ней не растрачивается (не «диссипирует») электрическая энергия.