Электродинамика (2) | страница 12



они эквивалентны одиночному импедансу z>p , равному


(22.19)

Если вы теперь оглянетесь назад, то увидите, что, выводя эти результаты, на самом деле вы пользовались правилами Кирх­гофа. Часто можно проанализировать сложную схему, повторно применяя формулы для последовательного и параллельного импедансов.



Фиг. 22.12, Цепь, которую мож­но проанализировать с помощью последовательных и параллель­ных комбинаций.


Фиг. 22,13. Цепь, кото­рую нельзя проанализи­ровать с помощью последовательных и параллельных комбинаций.

Скажем, таким способом можно проанализировать схему, показанную на фиг. 22.12. Импедансы z>4 и z>5 можно заменить их параллельным эквивалентом, то же можно сделать с импедансами z>6 и z>7. Затем импеданс z>2 можно скомбинировать с параллельным эквивалентом z>6 и z>7, по правилу последова­тельного соединения импедансов. Так постепенно можно свести всю схему к генератору, последовательно соединенному с одним импедансом Z. И тогда ток через генератор просто равен e/Z. А действуя в обратном порядке, можно найти токи в каждом импедансе.

Однако бывают совсем простые схемы, которые этим методом не проанализируешь. Например, схема фиг. 22.13. Чтобы проанализировать эту цепь, надо расписать уравнения для токов и напряжений по правилам Кирхгофа. Давайте проделаем это. Имеется только одно уравнение для токов:

I>1 + I>2 + I>3=0, откуда

I>3=-(I>1+I>2).

Выкладки можно сэкономить, если этот результат сразу же подставить в уравнения для напряжений. В этой схеме таких уравнений два:

-E>l + I>2z>2-I>lz>l=0 и Ј>2-(I>l + I>2)z>3-I>2z>2=0.

На два уравнения приходится два неизвестных тока. Решая их, получаем 1>1и I>2:


(22.20)

и

(22.21)

А третий ток получается как сумма первых двух.

Вот еще пример цепи, которую по правилам параллель­ных и последовательных импедансов рассчитывать нельзя

Фиг. 22.14. Мостиковая схема.

(фиг. 22.14). Такую схему на­зывают «мостик». Она встре­чается во многих приборах, измеряющих импедансы. В таких схемах обычно инте­ресуются таким вопросом:

как должны соотноситься различные импедансы, чтобы ток че­рез импеданс z>sбыл равен нулю? Вам предоставляется право найти те условия, при которых это действительно так,

§ 4. Эквивалентные контуры

Положим, мы подключили генератор Ј к цепи, в которой есть множество сложных переплетений импедансов (схематиче­ски это показано на фиг. 22.15, а). Все уравнения, вытекающие из правил Кирхгофа, линейны, и поэтому, вычислив из них ток I через генераторы, мы получим величину I, пропорциональную