Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews | страница 92



 USDOLLAR(-l) + b × USDOLLAR(-2). Чтобы не останавливаться на уже пройденном, но вместе с тем более четко структурировать полученные ранее знания, перечислим основные статистические процедуры, которые необходимо использовать при построении любой авторегрессионной (AR) или авторегрессионной со скользящей средней (ARMA) прогностической модели (алгоритм действий № 22).

Алгоритм действий № 22
Перечень действий, необходимых для построения статистической модели, представляющей собой уравнения авторегрессии (AR) или уравнения авторегрессии со скользящей средней (ARMA)

1. Построение коррелограммы в EViews с целью определения параметров р и q в модели ARMA(p, q). Коррелограмма поможет нам определить лаговые переменные в уравнении авторегрессии (см. алгоритм действий № 5 «Как построить коррелограмму в EViews»).

2. Решение уравнения регрессии и проверка значимости всех его параметров. Этот вопрос можно считать самым важным из всего нашего перечня (см. алгоритм действий № 3 «Как решить уравнение регрессии в Excel», алгоритм действий № 4 «Оценка статистической значимости уравнения регрессии и его коэффициентов» и алгоритм действий № 6 «Как решить уравнение регрессии в EViews»).

3. Тестирование AR- или ARMA-структуры уравнения на стационарность (см. алгоритм действий № 13 «Тестирование на стационарность AR-структуры уравнения USDOLLAR = а × USDOLLAR(-1) + b × USDOLLAR(-2) путем нахождения корней характеристического уравнения»). Тестирование исходного (а при необходимости и логарифмического) временного ряда на стационарность (см. алгоритм действий № 21 «Как провести тест на стационарность исходного уровня временно го ряда»),

4. Тестирование AR- или ARMA-структуры уравнения на импульсный ответ (см. алгоритм действий № 14 «Тестирование на импульсный ответ AR-структуры нестационарного процесса, описываемого уравнением USDOLLAR = а × USDOLLAR(-1) + b × USDOLLAR(-2)»).

5. Проверка остатков, полученных в результате решения уравнения регрессии, на наличие в них автокорреляции (см. алгоритм действий № 7 «Как выполняется LM-тест Бройша — Годфри в EViews»).

6. Проверка остатков на стационарность (см. алгоритм действий № 9 «Как в EViews проверить остатки на стационарность»),

7. Проведение анализа стандартных или стьюдентизированных остатков на наличие выбросов (в первую очередь тех, которые влияют на текущий прогноз), теста Чоу на точность прогноза (см. алгоритм действий № 17 «Диагностика в EViews влияния стьюдентизированных остатков на уравнение регрессии для прогностической модели USDOLLAR =