Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews | страница 91



Чтобы получить стационарный ряд, попробуем взять логарифмы от исходного уровня временного ряда. С этой целью нужно открыть файл USDOLLAR и воспользоваться опциями PROC/GENERATE BY EQUATION (выполнить/создать с помощью уравнения), после чего на экране появится диалоговое мини-окно GENERATE SERIES BY EQUATION (создать временной ряд по уравнению) (рис. 6.2), которое мы должны заполнить таким образом: USDOLLAR1 = log(USDOLLAR). В результате у нас появится новый логарифмический временной ряд, который поместим в файле USDOLLAR1.

Следующей задачей будет тестирование логарифмического временного ряда на стационарность. С этой целью откроем файл USDOLLAR1 и воспользуемся опциями VIEW/UNIT ROOT TEST (посмотреть/тест на единичный корень). Далее будем действовать таким же образом, как и в алгоритме действий № 21. При этом параметр INCLUDE IN TEST EQUATION (включить в тестовое уравнение) установим на опции INTERCEPT (включить константу). В результате диалоговое мини-окно UNIT ROOT TEST приобретет следующий вид (рис. 6.3).

Нажав на кнопку ОК, получим следующий вывод итогов по результатам расширенного теста Дикки — Фуллера (табл. 6.2). В результате удается получить уровень значимости (Prob. *) одностороннего ^-критерия (t-Statistic), равный нулю. Таким образом, нулевая гипотеза о наличии единичного корня и нестационарности логарифмического временного ряда опровергается и принимается альтернативная гипотеза о его стационарности.

6.2. Построение модели авторегрессии со скользящей средней и стационарной ARMA-структурой

Нам удалось выяснить, что созданный логарифмический временной ряд стационарен. Однако нужно еще построить уравнение авторегрессии со стационарной ARMA-структурой, что очень важно с точки зрения получения устойчивых (к воздействию внешних шоков) коэффициентов регрессии и получения надежных прогнозов. Этой проблемой мы уже занимались (см. алгоритм действий № 13 «Тестирование стационарности авторегрессионного процесса, описываемого уравнением USDOLLAR = а × USDOLLAR(-l) + b × USDOLLAR(-2), путем нахождения корней характеристического уравнения»), но тогда нам не удалось получить уравнение авторегрессии со стационарной ARMA-структурой.

Мы уже довольно много времени уделили построению нестационарной прогностической модели USDOLLAR = а × USDOLLAR(-l) + b × USDOLLAR(-2). Поскольку при этом нам приходилось учиться, то все процедуры, необходимые для построения этой модели, вводились не сразу, а постепенно, чтобы облегчить их усвоение. Теперь перед нами стоит задача построить стационарную прогностическую модель. При этом мы будем пользоваться теми же процедурами, которые использовались при создании прогностической модели USDOLLAR