Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews | страница 80



-статистика имеет асимптотическое χ>2 (хи-квадрат) распределение со степенями свободы, равными количеству прогнозируемых наблюдений. В том случае, если уровень значимости LR-статистики оказывается меньше 0,05, нулевая гипотеза о структурной стабильности отвергается.


Таким образом, тесты Чоу на структурную стабильность и на точность прогноза помогают анализировать устойчивость временного ряда. При этом тест на структурную стабильность, на наш взгляд, лучше подходит для ретроспективного анализа устойчивости статистической модели за весь период наблюдений, а тест на точность прогноза — для анализа ее стабильности относительно последнего наблюдения.

Причем в том случае, когда тест на точность прогноза свидетельствует о структурной нестабильности, возникшей в модели в результате резкого изменения курса доллара в последнем наблюдении, то для устранения смещения в коэффициентах регрессии (и (или) величины константы) в уравнение можно ввести фиктивную переменную. Приравняем к единице фиктивную переменную для последнего наблюдения, а все остальные наблюдения приравняем к нулю, и тем самым прогностической моделью будет аппроксимирован последний рост без изменения коэффициентов регрессии и константы (свободного члена) уравнения. Еще более надежным способом получения точного прогноза в ситуации, когда тест Чоу на точность прогноза показал структурную нестабильность, является отказ от уравнения авторегрессии с нестационарной ARMА-структурой и переход к уравнению авторегрессии со стационарной ARMA-структурой, поскольку внешние шоки в гораздо меньшей степени влияют на коэффициенты регрессии и константу последнего уравнения. О том, как построить прогностическую модель со стационарной ARMA-структурой, мы будем говорить в главе 6.

5.6. Структурные изменения в курсе доллара, произошедшие в августе-октябре 1998 г

Пока остановимся на тестировании характера структурных изменений во временном нестационарном ряде, поскольку по форме они могут быть различными. Вполне очевидно, что в том случае, когда тестирование показывает нестабильность временнoго ряда, тогда перед нами стоит задача выявить характер произошедших структурных изменений. В общем виде этот анализ проводится следующим образом. Например, предположим, что в момент времени t = 5 в динамике временнoго ряда произошли кардинальные изменения. Чтобы понять характер этих изменений, нужно сравнить параметры следующего уравнения регрессии: