Теория смысла Готлоба Фреге | страница 24
Естественно поставить вопрос: какой характер носило построенное Фреге логическое исчисление, пользуясь средствами которого выдающийся немецкий логик предпринял обоснование арифметики [3 и 4], действовал ли в исчислении Фреге тезис объемности? Исчисление Фреге носило объемный характер. Если два предиката (две логические функции) Φ(x) и Ψ(x) для любого аргумента принимают одно и то же значение, то мы можем, утверждает Фреге, превратить всеобщность этого равенства в равенство объемов, которые соответствуют этим предикатам. «На эту возможность следует смотреть как на логический закон, которым, впрочем, хотя и молчаливо, мы всегда уже пользовались, когда речь шла об объемах понятий. На нем в общем и целом и основано лейбницево-булевское логическое исчисление» [3, стр. 14). При этом следует особо подчеркнуть то, что объем понятия (т. е. класс предметов, для которых данная логическая функция принимает значение «истина»)>[46] Фреге считает особым логическим предметом (подобным двум истинностным значениям).
Известно, что иной формой принципа объемности является лейбницевская аксиома равенства. Она гласит, что два предмета равны, если, и только если, всё, что верно относительно одного предмета, верно и относительно другого предмета, и наоборот. Эту аксиому можно выразить и в виде правила (будем называть его правилом Лейбница) которое читается так: если p равно q, то в любом предложении Φ, содержащем p, последнее можно заменить (во всех или некоторых местах предложения Φ, где встречается p) на q, и при этом истинность высказывания не изменится; наоборот, если такая замена p на q возможна в любом предложении Φ, то p равно q ([21], стр. 91-92 и примечание редакции на стр. 293)