Теория смысла Готлоба Фреге | страница 14
Предикат, считает Фреге, приписывается или отвергается не относительно имени, а относительно его значения, т. е. самого предмета>[29]. Только тогда, когда имеет место приписывание или отвержение предиката относительно предмета имени, предложение получает достоинство истинности или ложности>[30]. Если имя, являющееся субъектом, не имеет значения, то предложение ни истинно и ни ложно. Но в этом случае (по принципу, согласно которому сложное имя не имеет значения, если какое-либо входящее в него составляющее имя не имеет значения) оно не должно иметь и значения. Далее, если, как совершенно справедливо считает Фреге, предикат приписывается или отвергается относительно самого предмета, а не его имени, то истинность (или ложность) предложения останется, конечно, без изменения, если мы станем менять имена, обозначающие предмет суждения, пока эти имена будут обозначать один и тот же предмет. Итак, получается, что если смотреть на истинность и ложность как на значения предложений, то как принцип замены равнозначным, так и принцип, по которому, если сложное имя имеет значение, то его имеет каждое входящее в него составляющее имя, окажутся справедливыми и для предложений.
Из общего учения Фреге об именах следует, что смысл предложения, т.е. выраженная в нем мысль, определяется только смыслом его частей, а не их значением. Для понимания мыслей нет надобности знать, имеют ли составляющие имена значение или нет. На деле же мы обычно стремимся выяснить значение составляющих имен. Это указывает на то, что мы признаем значение и за самим предложением. «Но почему же мы хотим того, чтобы каждое собственное имя имело не только смысл, но и значение? – спрашивает Фреге.- Почему мысль не удовлетворяет нас? Потому что для нас имеет важное значение ее истинностное значение ‹Wahrheitswert›»[5, стр. 33]. Под истинностным значением предложения Фреге понимает то, что оно либо истинно, либо ложно. Истинность или ложность и составляет значение повествовательного предложения>[31].
Понятие истинностного значения (или значения истинности, как иногда говорят) играет важную роль в математической логике. Еще до Фреге истинностные значения использовал американский логик Ч. Пирс>[32]. Фреге впервые употребил понятие истинностного значения в докладе «Функция и понятие», относящемся к 1891 г. [9]. Но только в статье «О смысле и значении» он включил это понятие в качестве органической составной части в общую теорию смысла и значения.