Кибернетика, или Управление и связь в животном и машине | страница 99
Многомерная теория представляет собой усложнение предыдущей теории. Существует, кроме того, другая близкая теория, которая является ее упрощением. Эта теория предсказания, фильтрации и количества информации в дискретных временных рядах. Такой ряд [c.154] представляет собой последовательность функций f>n(α) параметра α, где n пробегает все целочисленные значения от —∞ до ∞. Величина α, как и раньше, служит параметром распределения, и можно по-прежнему считать, что этот параметр изменяется равномерно в интервале (0, 1). Говорят, что временной ряд находится в статистическом равновесии, если замена n на n+v (v — целое число) равносильна сохраняющему меру преобразованию в себя интервала (0, 1), пробегаемого параметром α.
Теория дискретных временных рядов во многих отношениях проще теории непрерывных рядов. Гораздо легче, например, свести их к последовательности независимых выборов. Каждый член (в случае перемешивания) можно представить как комбинацию предшествующих членов с некоторой величиной, не зависящей от всех предшествующих членов и равномерно распределенной в интервале (0, 1), и последовательность этих независимых коэффициентов взять вместо броунова движения, столь важного для непрерывных рядов.
Если f>n(α) — временной ряд, находящийся в статистическом равновесии и метрически транзитивный, то его коэффициент автокорреляции будет равен
и мы будем иметь
почти для всех α. Положим
или
[c.155]
Пусть
и
Тогда при очень общих условиях k(ω) будет граничным значением на единичном круге для функции без нулей и особых точек внутри единичного круга; ω является здесь углом. Отсюда
Если теперь за наилучшее линейное предсказание функции f>n(α) с опережением v принимается
то
Это выражение аналогично выражению (3.88). Заметим, что если положить
то