Кибернетика, или Управление и связь в животном и машине | страница 98



среднеквадратическое значение пропорционально величине

 

          (3.920)

Следовательно, в силу (3.09) полное количество информации об М равно

 

,          (3.921)

а временная плотность передачи энергии равна этой величине, деленной на 2А. Если А→∞, то выражение (3.921) стремится к

 

.          (3.922)

Именно этот результат и был получен автором и Шенноном для скорости передачи информации в рассматриваемом случае. Как видим, эта величина зависит не только от ширины полосы частот, которой мы располагаем для передачи сообщения, но и от уровня шума. В действительности она обнаруживает прямую связь с аудиограммами, применяемыми для измерения величины слуха и потери его у данного индивидуума. В аудиограмме абсциссой служит частота, ординатой нижней границы — логарифм порога слышимой силы звука (мы можем назвать его логарифмом внутреннего шума принимающей системы), а ординатой верхней границы — логарифм наибольшей силы звука, которую система может пропустить. Площадь между ними, представляющая величину такой же размерности, как выражение (3.922), принимается за меру скорости передачи информации, с которой ухо способно справиться. [c.153]

Теория сообщений, линейно зависящих от броунова движения, имеет много важных вариантов. Основными являются формулы (3.88), (3.914) и (3.922), разумеется, вместе с определениями, необходимыми для их понимания. Существует ряд вариантов этой теории. Прежде всего она дает нам наилучший возможный синтез предсказывающих устройств и волновых фильтров в случае, когда сообщения и шумы представляют собой реакции линейных резонаторов на броуновы движения, однако и в значительно более общих случаях она обеспечивает некоторый возможный синтез предсказывающих устройств и фильтров. Последние, правда, не будут иметь абсолютно наилучшей конструкции, но, во всяком случае, позволят свести к минимуму среднеквадратическую ошибку предсказания при использовании линейных устройств. Однако, вообще говоря, найдутся такие нелинейные устройства, которые будут работать лучше, чем любые линейные устройства.

Кроме того, выше мы рассматривали простые временные ряды, в которых от времени зависит лишь одна числовая переменная. Существуют также многомерные временные ряды, где несколько таких переменных зависят все вместе от времени; именно многомерные ряды имеют наибольшее значение в экономических науках, метеорологии и т. п. Полная карта погоды Соединенных Штатов, составляемая ежедневно, есть такой временной ряд. В этом случае нам нужно одновременно выразить несколько функций через частоту, причем квадратические величины, такие, как выражение (3.35) или |