Лекции по физике 1 | страница 68



Иногда мы строим догадки потому, что хотим при ограничен­ности своих знаний сказать как можно больше о данной ситуа­ции. В сущности ведь любое обобщение носит характер догадки. Любая физическая теория — это своего рода догадка. Но догадки тоже бывают разные: хорошие и плохие, близкие и дале­кие. Тому, как делать наилучшие догадки, учит нас теория веро­ятностей. Язык вероятностей позволяет нам количественно го­ворить о таких ситуациях, когда исход весьма и весьма неопре­деленен, но о котором все же в среднем можно что-то сказать.

Давайте рассмотрим классический пример с подбрасыванием монеты. Если монета «честная», то мы не можем знать наверня­ка, какой стороной она упадет. Однако мы предчувствуем, что ври большом числе бросаний число выпадений «орла» и «решки» должно быть приблизительно одинаковым. В этом случае го­ворят: вероятность выпадения «орла» равна половине.

Мы можем говорить о вероятности исхода только тех наблю­дений, которые собираемся проделать в будущем. Под вероятнос­тью данного частного результата наблюдения понимается ожидаемая нами наиболее правдоподобная доля исходов с данным результатом при некотором числе повторений наблюдения. Вообразите себе повторяющееся N раз наблюдение, например подбрасывание вверх монеты. Если N>А — наша оценка наибо­лее правдоподобного числа выпадений с результатом А, напри­мер выпадений «орла», то под вероятностью Р(А) результата А мы понимаем отношение

P(A) =N>A/N(6.1)

Наше определение требует некоторых комментариев. Преж­де всего мы говорим о вероятности какого-то события только в том случае, если оно представляет собой возможный резуль­тат испытания, которое можно повторить. Но отнюдь не ясно, имеет ли смысл такой вопрос: какова вероятность того, что в этом доме поселилось привидение?

Вы, конечно, можете возразить, что никакая ситуация не может повториться в точности. Это верно. Каждое новое наблю­дение должно происходить по крайней мере в другое время или в другом месте. По этому поводу я могу сказать только одно: необходимо, чтобы каждое «повторное» наблюдение казалось нам эквивалентным. Мы должны предполагать по крайней мере, что каждый новый результат наблюдения возник из равноцен­ных начальных условий и из одного и того же уровня началь­ных знаний. Последнее особенно важно. (Если вы заглянули в карты противника, то, конечно, ваши прогнозы о шансах на выигрыш будут совсем другими, чем если бы вы играли честно!)

Хочу отметить, что я