Пространство. Время. Движение (2) | страница 37
§ 2. Затухающие колебания
Вернемся к основной теме — переходным решениям. Переходными решениями называются решения дифференциального уравнения, соответствующие ситуации, когда внешняя сила не действует, но система тем не менее не находится в покое. (Конечно, лучше всего решать задачу, когда сила не действует, а система покоится, покоится — ну и пусть покоится!) Соответствующие переходным решениям колебания можно вызвать так: заставить силу поработать, а потом выключить ее. Что тогда случится с осциллятором? Сначала подумаем, как будет вести себя система с очень большой Q. Если сила действовала долго, то запасенная энергия была постоянной и работа тратилась лишь для того, чтобы поддержать ее. Предположим теперь, что мы выключили силу, тогда трению, которое раньше поглощало энергию поставщика, питаться больше нечем — кормильца-то нет. И трение начинает пожирать запасенную осциллятором энергию. Пусть добротность системы Q/2p=1000. Это значит, что работа, произведенная за цикл, равна 1/1000 запасенной энергии. Пожалуй, разумно предположить, что при не поддерживаемых внешней силой колебаниях за каждый цикл будет теряться одна тысячная часть имеющейся к началу цикла энергии. Будем считать, что при больших Qизменение энергии описывается угаданным нами приближенным уравнением (мы еще вернемся к этому уравнению и сделаем его совсем верным!)
Уравнение это приближенное, потому что оно справедливо только для больших Q. За каждый радиан система теряет 1/Qчасть запасенной энергии Е. Значит, за промежуток времени dtэнергия уменьшится в (wdt/Qраз (частота появляется при переводе радианов в настоящие секунды). А какая это частота? Предположим, что система устроена очень жестко, поэтому даже при действии силы она сколько-нибудь заметно колеблется только со своей собственной частотой. Поэтому будем считать, что w — это резонансная частота w>0. Таким образом, из уравнения (24.8) следует, что запасенная энергия меняется
следующим образом:
Теперь нам известно значение энергии в любой момент. Какой будет приближенная формула, определяющая амплитуду колебаний как функцию времени? Той же самой? Нет! Потенциальная энергия пружины изменяется как