Пространство. Время. Движение (2) | страница 37



было дано в предыдущей главе. Что такое Qдля электрической цепи? Чтобы найти эту ве­личину, надо заменить mна L, mgна Rи mw>2>0на 1/С(см. табл. 23.1). Тогда qвточке резонанса равна Lw/R, где w — ре­зонансная частота. В цепи с большой Qзапасенная цепью энергия велика по сравнению с работой за один цикл, произ­водимой поддерживающей колебания в цепи машиной.

§ 2. Затухающие колебания


Вернемся к основной теме — переходным решениям. Пе­реходными решениями называются решения дифференциаль­ного уравнения, соответствующие ситуации, когда внешняя сила не действует, но система тем не менее не находится в покое. (Конечно, лучше всего решать задачу, когда сила не действует, а система покоится, покоится — ну и пусть покоится!) Соответ­ствующие переходным решениям колебания можно вызвать так: заставить силу поработать, а потом выключить ее. Что тогда случится с осциллятором? Сначала подумаем, как будет вести себя система с очень большой Q. Если сила действовала долго, то запасенная энергия была постоянной и работа тратилась лишь для того, чтобы поддержать ее. Предположим теперь, что мы выключили силу, тогда трению, которое раньше поглощало энергию поставщика, питаться больше нечем — кормильца-то нет. И трение начинает пожирать запасенную осциллятором энергию. Пусть добротность системы Q/2p=1000. Это значит, что работа, произведенная за цикл, равна 1/1000 запасенной энергии. Пожалуй, разумно предположить, что при не поддерживае­мых внешней силой колебаниях за каждый цикл будет теряться одна тысячная часть имеющейся к началу цикла энергии. Будем считать, что при больших Qизменение энергии описывается угаданным нами приближенным уравнением (мы еще вернемся к этому уравнению и сделаем его совсем верным!)

Уравнение это приближенное, потому что оно справедливо только для больших Q. За каждый радиан система теряет 1/Qчасть запасенной энергии Е. Значит, за промежуток времени dtэнергия уменьшится в (wdt/Qраз (частота появляется при переводе радианов в настоящие секунды). А какая это частота? Предположим, что система устроена очень жестко, поэтому даже при действии силы она сколько-нибудь заметно колеблется толь­ко со своей собственной частотой. Поэтому будем считать, что w — это резонансная частота w>0. Таким образом, из уравнения (24.8) следует, что запасенная энергия меняется

следующим образом:


Теперь нам известно значение энергии в любой момент. Какой будет приближенная формула, определяющая амплитуду коле­баний как функцию времени? Той же самой? Нет! Потенциаль­ная энергия пружины изменяется как