Пространство. Время. Движение (2) | страница 36



=>1/>2A>2>0, легко найти эту среднюю мощность. Так как

, то
. Следовательно, средняя мощность равна

=>1/>2gw>2x>2>0. (24.4)

Если перейти к электрическим цепям, то dx/dtнадо заменить на ток I (I — это dq/dt, где qсоответствует х), а gmна сопро­тивление R. Значит, скорость потери энергии (мощности силы) в электрической цепи равна произведению сопротивления на средний квадрат силы тока

<Р>=R>2>=R>l/>2I>2>0. (24.5)

Энергия, естественно, переходит в тепло, выделяемое сопро­тивлением; это так называемые тепловые потери, или джоулево тепло.


Интересно разобраться также в том, много ли энергии может накопить осциллятор. Не путайте этого вопроса с вопросом о средней мощности, ибо хотя выделяемая силой мощность сна­чала действительно накапливается осциллятором, потом на его долю остается лишь то, что не поглотило трение. В каждый мо­мент осциллятор обладает вполне определенной энергией, по­этому можно вычислить среднюю запасенную энергию . Мы уже вычислили среднее значение (dx/dt)>2, так что

Если осциллятор достаточно добротен и частота w близка к w>0, то ЅхЅбольшая величина, запасенная энергия очень велика и можно накопить очень много энергии за счет небольшой силы. Сила производит большую работу, заставляя осциллятор рас­качиваться, но после того, как установилось равновесие, вся сила уходит на борьбу с трением. Осциллятор располагает большой энергией, если трение очень мало, и потери энергии невелики даже при очень большом размахе колебаний. Доб­ротность осциллятора можно измерять величиной запасенной энергии по сравнению с работой, совершенной силой за период колебания.

Что это за величина — накопленная энергия по сравнению с работой силы за цикл? Ее обозначили буквой Q. Величина Qэто умноженное на 2pотношение средней запасенной энер­гии к работе силы за один цикл (можно рассматривать работу не за цикл, а за радиан, тогда в определении Qисчезнет 2p)

Пока Qне слишком велика — это плохая характеристика системы, если же Qдовольно большая величина, то можно сказать, что это мера добротности осциллятора. Многие пыта­лись дать самое простое и полезное определение Q; разные оп­ределения немногим отличаются друг от друга, но если Qочень велика, то все они согласуются друг с другом. При самом общем определении по формуле (24.7) Qзависит от w. Если мы имеем дело с хорошим осциллятором вблизи резонансной частоты, то (24.7) можно упростить, положив w = w>0, тогда Q=w>0/g, такое определение