Лекции по физике 4a | страница 59



«неприятна» и откуда нам знать, что нелинейность «сидит» в громкоговорителе, а не в нашем ухе,— не ясно!)

Однако в некоторых случаях нелинейность совершенно необходима, и в некоторых частях радиопередающих и прини­мающих устройств она намеренно делается побольше. При ра­диопередачах с помощью амплитудной модуляции сигналы от «голоса» (частоты порядка нескольких килогерц) комбинируются с «несущим сигналом» (с частотой порядка нескольких ме­гагерц) в нелинейной цепи, которая называется модулятором. При этом получаются модулированные колебания, которые за­тем излучаются в эфир. В приемнике сигнал снова попадает в нелинейный контур, который складывает и вычитает частоты модулированного сигнала, выделяя снова звуковой сигнал.

Когда мы разбирали вопрос прохождения света через ве­щество, мы предполагали, что вынужденные колебания зарядов пропорциональны электрическому полю света, т. е. мы брали линейную реакцию. Это действительно очень хорошее прибли­жение. Только в последние несколько лет были построены источ­ники света (лазеры), которые дают интенсивность, достаточную для наблюдения нелинейных эффектов. Теперь можно создавать гармоники световых частот. Если пропускать через кусок стекла сильный красный свет, то выходит он оттуда с неболь­шим добавком второй гармоники — голубого света!

* Ее можно вычислить следующим образом. Во-первых, заметим, что

Во-вторых, разложив подынтегральное выражение

в ряд, получим l/(1+x>2)=l-x>2+x>4-x>6+... . Интегрируя затем почленно этот ряд (от нуля до х), получаем arctgx:=l-х>3/3+х>5/5-x>7/7+..., а поло­жив x=1, мы докажем использованный результат, поскольку

arctg1=p/4.

* В основе деления октавы на 12 ступеней лежит открытие Пифагора. Он брал струну, зажимал ее посредине и получал звук на октаву выше, нем звук незажатой струны. Затем половину струны он опять зажимал посредине и получал звук еще на октаву выше и т. д. Точно так же, за­жимая последовательно струну на >1/>3длины, он каждый раз получал звук выше на квинту. И вот оказалось, что 12 квинт почти точно уклады­ваются на интервале в 7 октав [т. е. 2>7~=(>3/>2)>12]. Если же теперь от каждой квинты отложить целое число октав вверх и вниз, то каждая первона­чальная октава разделится на 12 частей. Так возник нифагорийский строй. Однако беда в том, что 12 квинт только приблизительно равны 7 октавам, поэтому в разных местах диапазона «лесенки» получались неровные. При развитии мелодии эти неточности накапливались и возникали про­тивные уху интервалы, так называемые «волки», которые страшно досаж­дали музыкантам. Иногда дело доходило до курьезов. Рассказывают, что известный композитор Жак Рамо сумел так ловко извлекать из органа