Лекции по физике 4a | страница 56
Фиг. 50.3. Ступенчатая функция.f(t)=+1 для 0<t<T/2 ,
f(t)=-1 для T/2<t<T.
Поскольку эту функцию нельзя записать в точной алгебраической форме, то брать интеграл от 0 до Т обычным способом невозможно. Однако если разделить его на две части: по интервалу от 0 до T/2 [на котором функция f(t)=1] и по интервалу от T/2 до T [на котором f(t) -1], то интеграл легко берется. В результате должно получиться
где w=2p/T. Таким образом, оказывается, что для нашей ступенчатой волны (со специально выбранной фазой) будут только нечетные гармоники, причем их амплитуды обратно пропорциональны частотам.
Давайте проверим, что для некоторого значения tрезультат (50.19) действительно дает снова f(t). Возьмем f = T/4или wt=p/2. Тогда
Сумма этого ряда равна p/4, а, стало быть, f(T)=1 .
§ 5. Теорема об энергии
Энергия волны пропорциональна квадрату ее амплитуды.
Для сложной волны энергия за один период пропорциональна m
Эту энергию можно связать с коэффициентами Фурье.
Напишем
После раскрытия квадрата в правой части мы получим сумму всевозможных перекрестных членов типа a>5cos5wtb>7cos7wt. Однако выше мы уже показали [уравнения (50.11) и (50.12)], что интегралы от всех таких членов по одному периоду равны нулю, так что останутся только квадратные члены, подобные a>2>5cos>25wt. Интеграл от любого квадрата косинуса или синуса по одному периоду равен Т/2, так что получаем
Это уравнение называют «теоремой об энергии», которая говорит, что полная энергия волны равна просто сумме энергий всех ее фурье-компонент. Применяя, например, эту теорему к ряду (50.19), мы получаем
поскольку [f(t)]>2=1. Таким образом мы узнали, что сумма квадратов обратных нечетных чисел равна p>2/8. Точно так же, выписав сначала ряд Фурье для функции и используя затем теорему об энергии, можно доказать результат, понадобившийся нам в гл. 45, т. е. что 1+>1/2>4+>1/3>4+... равно p>4/90.
§ 6. Нелинейная реакция
Наконец, в теории гармоник есть одно очень важное явление, которое необходимо отметить, учитывая его практическую важность, но это уже относится к области нелинейных эффектов. Во всех рассмотренных нами до сих пор системах все предполагалось линейным; реакция на действие силы, например перемещение или ускорение, всегда была пропорциональна силам. Токи в электрической цепи были тоже пропорциональны напряжениям и т. д. Теперь мы хотим рассмотреть случаи, когда строгая пропорциональность отсутствует. Представим на минуту устройство, реакция которого x