Лекции по физике 4a | страница 56




Фиг. 50.3. Ступенчатая фун­кция.f(t)=+1 для 0<t<T/2 ,

f(t)=-1 для T/2<t<T.

Поскольку эту функцию нельзя записать в точной алгебраической форме, то брать интеграл от 0 до Т обычным способом невозможно. Однако если разделить его на две части: по интервалу от 0 до T/2 [на котором функция f(t)=1] и по интервалу от T/2 до T [на ко­тором f(t) -1], то интеграл легко берется. В результате должно получиться



где w=2p/T. Таким образом, оказывается, что для нашей сту­пенчатой волны (со специально выбранной фазой) будут только нечетные гармоники, причем их амплитуды обратно пропор­циональны частотам.


Давайте проверим, что для некоторого значения tрезультат (50.19) действительно дает снова f(t). Возьмем f = T/4или wt=p/2. Тогда


Сумма этого ряда равна p/4, а, стало быть, f(T)=1 .

§ 5. Теорема об энергии

Энергия волны пропорциональна квадрату ее амплитуды.


Для сложной волны энергия за один период пропорциональна m


Эту энергию можно связать с коэффициентами Фурье.


Напишем


После раскрытия квадрата в правой части мы получим сумму всевозможных перекрестных членов типа a>5cos5wtb>7cos7wt. Однако выше мы уже показали [уравнения (50.11) и (50.12)], что интегралы от всех таких членов по одному периоду равны нулю, так что останутся только квадратные члены, подобные a>2>5cos>25wt. Интеграл от любого квадрата косинуса или синуса по одному периоду равен Т/2, так что получаем


Это уравнение называют «теоремой об энергии», которая гово­рит, что полная энергия волны равна просто сумме энергий всех ее фурье-компонент. Применяя, например, эту теорему к ряду (50.19), мы получаем


поскольку [f(t)]>2=1. Таким образом мы узнали, что сумма квад­ратов обратных нечетных чисел равна p>2/8. Точно так же, выпи­сав сначала ряд Фурье для функции и используя затем теорему об энергии, можно доказать результат, понадобившийся нам в гл. 45, т. е. что 1+>1/2>4+>1/3>4+... равно p>4/90.

§ 6. Нелинейная реакция

Наконец, в теории гармоник есть одно очень важное явление, которое необходимо отметить, учитывая его практическую важ­ность, но это уже относится к области нелинейных эффектов. Во всех рассмотренных нами до сих пор системах все предпола­галось линейным; реакция на действие силы, например пере­мещение или ускорение, всегда была пропорциональна силам. Токи в электрической цепи были тоже пропорциональны на­пряжениям и т. д. Теперь мы хотим рассмотреть случаи, когда строгая пропорциональность отсутствует. Представим на ми­нуту устройство, реакция которого x