Лекции по физике 4a | страница 22
частотами.
Нетрудно догадаться, что при этом произойдет. Действуя так же, как прежде, давайте предположим, что имеются два одинаковых осциллирующих источника с одной и той же частотой, причем фазы их подобраны так, что в некоторую точку Р сигналы приходят с одинаковой фазой. Если это свет, то в этой точке он очень ярок, если это звук, то он очень громок, а если это электроны, то их очень много. С другой стороны, если приходящие волны отличаются по фазе на 180°, то в точке Р не будет никаких сигналов, ибо полная амплитуда будет иметь здесь минимум. Предположим теперь, что некто крутит ручку «регулировка фазы» одного из источников и меняет разность фаз в точке Р то туда, то сюда, скажем сначала он делает ее нулевой, затем — равной 180° и т. д. При этом, разумеется, будет меняться и сила приходящего сигнала. Ясно теперь, что если фаза одного из источников медленно, постоянно и равномерно меняется по сравнению с другим, начиная с нуля, а затем возрастает постепенно до 10, 20, 30, 40° и т. д., то в точке Р мы увидим ряд слабых и сильных «пульсаций», ибо когда разность фаз проходит через 360°, в амплитуде снова возникает максимум. Но утверждение, что один источник с постоянной скоростью меняет свою фазу по отношению к другому, равносильно утверждению, что число колебаний в 1 сек у этих двух источников несколько различно.
Итак, теперь известен ответ: если взять два источника, частоты которых немного различны, то в результате сложения получаются колебания с медленно пульсирующей интенсивностью. Иначе говоря, все сказанное здесь действительно имеет отношение к делу!
Этот результат легко получить и математически. Предположим, например, что у нас есть две волны и забудем на минуту о всех пространственных соотношениях, а просто посмотрим, что приходит в точку Р. Пусть от одного источника приходит волна cosw>1t, а от другого — волна cosw>2t, причем обе частоты w>1 и w>2 не равны в точности друг другу. Разумеется, амплитуды их тоже могут быть различными, но сначала давайте предположим, что амплитуды равны. Общую задачу мы рассмотрим позднее. Полная амплитуда в точке Р при этом будет суммой двух косинусов. Если мы построим график зависимости амплитуды от времени, как это показано на фиг.48.1,то окажется, что, когда гребни двух волн совпадают, получается большое отклонение, когда совпадают гребень и впадина — практически нуль, а когда гребни снова совпадают, вновь получается большая волна.