Лекции по физике 5a | страница 9



Шар собирает на себя заряды, потому что снаружи заряженной сферы имеются электрические поля, за­ставляющие заряды переходить на шарик (или с него). А если вы проделаете тот же опыт, коснувшись шариком внутренности заряженной сферы, то увидите, что к электрометру заряд не подводится. Из такого опыта сразу видно, что внутреннее поле составляет в лучшем случае несколько процентов от внешнего и что закон Гаусса верен, по крайней мере, приближенно.

Кажется, первым, заметившим, что поле внутри заряженной сферы равно нулю, был Бенджамен Франклин. Это показалось ему странным. Когда он сообщил об этом Пристли, тот заподоз­рил, что это связано с законом обратных квадратов, потому что было известно, что сферический слой вещества не создает внут­ри себя поля тяготения. Но Кулон измерил обратную квадра­тичную зависимость только через 18 лет, а закон Гаусса появился на свет и того позже.


Фиг. 5.10. Внутри замкну­той проводящей оболочки электрическое поле равно нулю.

Закон Гаусса был про­верен очень тщательно; для этого электрометр помещали внутрь большой сферы и наблюдали, отклонится ли стрелка, когда сферу зарядят до высокого напряжения. Результат всегда получался отрицательным. Если знать геометрию аппарата и чув­ствительность прибора, можно рассчитать наименьшее поле, которое еще доступно наблю­дению. Из этого числа можно установить верхний предел отклонения показателя степени от двух. Если записать зависи­мость электростатической силы от расстояния в виде r>-2>+>e, то можно определить верхнюю границу e. Этим способом Максвелл узнал, что e меньше 1/10000. Опыт был повторен и усовершен­ствован в 1936 г. Плимптоном и Лафтоном. Они обнаружили, что кулонов показатель отличается от 2 меньше чем на одну миллиардную.

Это подводит нас к интересному вопросу: как точно выполня­ется закон Кулона в различных обстоятельствах? В только что описанных опытах измерялась зависимость поля от расстояния на расстояниях порядка десятков сантиметров. А что можно сказать о внутриатомных расстояниях, скажем внутри атома водорода, где, как мы считаем, электрон притягивается к ядру по тому же закону обратных квадратов? Конечно, для описа­ния механической части поведения электрона нужна кванто­вая механика, но сила здесь — по-прежнему привычная элект­ростатическая сила. В постановке задачи об атоме водорода известна потенциальная энергия электрона как функция рас­стояния от ядра, и тогда закон Кулона приводит к потенциалу, обратно пропорциональному первой степени расстояния. С ка­кой точностью этот показатель известен на таких малых расстоя­ниях? В итоге очень тщательных измерений относительного расположения уровней энергии водорода, проведенных в 1947 г. Лэмбом и Ризерфордом, нам теперь известно, что и на расстоя­ниях порядка атомных, т. е. порядка ангстрема (10