Лекции по физике 5a | страница 8




Представим узкий конус, который начи­нается в точке Р и тянется до поверхности сферы, вырезая там небольшой сферический участок Da>t (фиг. 5.9). В точности сим­метричный конус по другую сторону вершины вырежет на по­верхности площадь Dа>2. Если расстояния от Р до этих двух элементов площади равны r>1 и r>2, то площади находятся в от­ношении

(Вы можете доказать это для любой точки шара с помощью гео­метрии.)

Если поверхность сферы заряжена равномерно, то заряд Dqна каждом элементе поверхности пропорционален его пло­щади


Тогда закон Кулона утверждает, что величины полей, созда­ваемых в Р этими двумя элементами поверхности, находятся в отношении

Поля в точности взаимно уничтожаются. Таким способом можно разбить на пары всю сферу. Значит, все поле в точке Р равно нулю. Но вы видите, что этого не было бы, окажись показатель степени rв законе Кулона не равным в точности двойке.

Справедливость закона Гаусса зависит от закона обратных квадратов Кулона. Если бы закон силы не подчинялся в точности зависимости 1/r>2, то поле внутри однородно заряженной сфе­ры не было бы в точности равно нулю. Например, если бы поле менялось быстрее (скажем, как 1/r>3), то часть сферы, которая ближе к точке Р, создала бы в точке Р более сильное поле, чем дальняя часть. Получилось бы (для положительного поверх­ностного заряда) радиальное поле, направленное к центру. Эти заключения подсказывают нам элегантный путь проверки точности выполнения закона обратных квадратов. Для этого нужно только узнать, в точности ли поле внутри однородно за­ряженной сферы равно нулю.

Наше счастье, что такой способ существует. Ведь обычно трудно измерить физическую величину с высокой точностью. Добиться однопроцентной точности было бы нетрудно, но как быть, если нам понадобится измерить закон Кулона с точностью, скажем, до одной миллиардной? Можно почти ручаться, что из­мерить с такой точностью силу, действующую между двумя за­ряженными телами, не способны даже лучшие приборы. Но если только нужно убедиться в том, что поле внутри сферы меньше некоторого значения, то можно провести довольно точное из­мерение справедливости закона Гаусса и тем самым проверить обратную квадратичную зависимость в законе Кулона. В сущ­ности происходит сравнение закона силы с идеальным законом обратных квадратов. Именно такие сравнения одинаковых, или почти одинаковых, вещей обычно становятся основой самых точ­ных физических измерений.

Как же наблюдать поле внутри заряженной сферы? Один из способов,— это попытаться зарядить тело, дотронувшись им до внутренней части сферического проводника. Вы знаете, что если коснуться металлическим шариком заряженного тела, затем электрометра, то прибор зарядится и стрелка отклонится от нуля (фиг. 5.10,