Лекции по физике 5a | страница 11
Вернемся теперь к важному вопросу, от которого мы отмахнулись, когда говорили об опытном подтверждении закона Гаусса.
Вас могло удивить, как в опыте Максвелла и Плимптона— Лафтона удалось достичь такой точности. Ведь вряд ли сферический проводник мог быть идеальной сферой. Достичь точности в одну миллиардную — это прекрасно; но резонно спросить: как могли они столь точно изготовить сферу? Наверняка на сфере были небольшие неправильности, как на всякой реальной сфере, и не могли ли эти нерегулярности создать какое-то поле внутри? Мы хотим показать теперь, что в идеальной сфере вовсе нет необходимости. Оказывается можно доказать, что внутри замкнутой проводящей оболочки любой формы поля не бывает. Иными словами, опыты зависели от 1/r>2, но никак не были связаны со сферической формой поверхности (разве что со сферой легче было бы рассчитать поле, если бы закон Кулона оказался ошибочным). Итак, мы снова возвращаемся к этому вопросу. Для решения его нам нужно знать кое-какие свойства проводников электричества.
§ 9. Поля проводника
Проводник электричества — это твердое тело, в котором есть много «свободных» электронов. Электроны могут двигаться в веществе свободно, но не могут покидать поверхности. В металле бывает так много свободных электронов, что всякое электрическое поле приводит многие из них в движение. И либо возникший таким образом ток электронов должен непрерывно поддерживать свое существование за счет внешних источников энергии, либо движение электронов прекращается, как только они разрядят источники, вызвавшие ноле вначале. В условиях «электростатики» мы не рассматриваем непрерывных источников тока (о них мы будем говорить в магнитостатике), так что электроны движутся только до тех пор, пока не расположатся так, что повсюду внутри проводника создастся нулевое электрическое поле. (Как правило, это происходит в малые доли секунды.) Если бы осталось внутри хоть какое-нибудь поле, оно бы вынудило двигаться еще какие-то электроны; возможно только такое электростатическое решение, когда поле всюду внутри равно нулю.
Теперь рассмотрим внутренность заряженного проводящего тела. (Мы имеем в виду внутреннюю часть самого металла.) Так как металл — проводник, то внутреннее поле должно быть нулем, а значит, и градиент потенциала j равен нулю. Это значит, что j от точки к точке не меняется. Любой проводник — это эквипотенциальная область, и его поверхность — эквипотенциальна. Раз в проводящем материале электрическое поле повсюду равно нулю, то и дивергенция Е тоже равна нулю, и по закону Гаусса плотность заряда во