Лекции по физике 8a | страница 71
Каков же этот гамильтониан? Мы просто сообщим вам ответ, потому что никакого «доказательства» дать не можем, разве что сказать, что именно так устроен атом.
Гамильтониан имеет вид
Теперь он состоит из трех частей. Первый член А(s>е·s>р) представляет магнитное взаимодействие между электроном и протоном; оно такое же, как если бы магнитного поля не было. Влияние внешнего магнитного поля проявляется в остальных двух членах. Второй член (-m>еs>е·В) — это та энергия, которой электрон обладал бы в магнитном поле, если бы он там был один. Точно так же последний член (-m>рs>р·В) был бы энергией протона-одиночки. Согласно классической физике, энергия их обоих вместе была бы суммой их энергий; по квантовой механике это тоже правильно. Возникающая из-за наличия магнитного поля энергия взаимодействия равна просто сумме энергий взаимодействия электрона с магнитным полем и протона с тем же полем, выраженных через операторы сигма. В квантовой механике эти члены в действительности не являются энергиями, но обращение к классическим формулам для энергии помогает запоминать правила написания гамильтониана. Как бы. то ни было, (10.27) — это правильный гамильтониан.
Теперь нужно вернуться к началу и решать всю задачу сызнова. Но большая часть работы уже сделана, надо только добавить эффекты, вызываемые новыми членами. Примем, что магнитное поле В постоянно и направлено по z. Тогда к нашему старому гамильтонову оператору Н^надо добавить два новых куска; обозначим их Н^':
Пользуясь табл. 10.1, мы сразу получаем
Смотрите, как удобно! Оператор Н', действуя на каждое состояние, дает просто число, умноженное на это же состояние. В матрице <i|H'|j> есть поэтому только диагональные