Лекции по физике 8a | страница 54



>0 с
, то они не захотели усложнять положения и представили его приближенно в виде системы с двумя состоя­ниями. Другие состояния были учтены в той мере, в какой их влияние неявно скажется на амплитудах (9.44).

В соответствии с этим Гелл-Манн и Пайс анализировали нейтральную частицу как систему с двумя состояниями. Начали они с того, что выбрали состояния | К>0> и |

> за базисные состояния. (С этого места весь рассказ становится очень похо­жим на то, что было для молекулы аммиака.) Всякое состояние |y> нейтрального K-мезона можно тогда описать, задав ампли­туды того, что оно окажется в одном из базисных состояний. Обозначим эти амплитуды

Следующим шагом мы должны написать уравнение Гамиль­тона для такой системы с двумя состояниями. Если бы К>0и

не были бы связаны между собой, то уравнения выглядели бы просто

Однако есть еще амплитуда

перехода К>0в

; поэтому в правую часть первого уравнения надо еще добавить слагаемое

Аналогичное слагаемое АС>+ надо добавить и в уравнение, опре­деляющее скорость изменения С _. Но это еще не все! Если уж мы учитываем двухпионный эффект, то надо учесть и то, что существует еще дополнительная амплитуда превращения К>0 в самого себя по цепочке

Эта дополнительная амплитуда (обозначим ее

)в точности равна амплитуде

, так как амплитуды перехода в пару p-мезонов или от пары p-мезонов в К>0или

одни и те же.

Если угодно, можно показать это и подробнее. Прежде всего напишем

Симметрия между материей и антиматерией требует, чтобы

а также

Отсюда

а также

очем мы уже говорили выше.

Итак, у нас есть две дополнительные амплитуды

и

, обе равные А, которые надо вставить в урав­нения Гамильтона. Первая приводит к слагаемому АС>+в правой части уравнения для dC>+/dt, а вторая — к слагаемому АС>-в правой части уравнения для dC>-/dt. Рассуждая именно так, Гелл-Манн и Пайс пришли к заключению, что уравне­ния Гамильтона для системы

должны иметь вид

Теперь надо сделать поправку к сказанному в прежних гла­вах: к тому, что две амплитуды, такие, как

и
, выражающие обратные друг к другу процессы, всегда комплексно сопряжены. Это было бы верно, если бы мы говорили о частицах, которые не распадаются. Но если частицы могут распадаться, а поэтому «пропадать», то амплитуды не обязательно комплексно сопряжены. Значит, равенство (9.44)

не означает, что наши амплитуды суть действительные числа. На самом деле они суть комплексные числа. Поэтому коэффи­циент А комплексный и его нельзя просто включить в энер­гию