Лекции по физике 8a | страница 10



Получилась довольно простая пара уравнений — и пока еще точная. Производная от одной переменной есть функция от времени

, умноженная на вторую переменную; про­изводная от второй — такая же функция от времени, умножен­ная на первую. Хотя эти простые уравнения в общем не реша­ются, но в некоторых частных случаях мы решим их.

Нас, по крайней мере сейчас, интересует только случай ко­леблющегося электрического поля. Взяв x(t) в форме (7.37), мы увидим, что уравнения для g>I и g>IIобратятся в

(it

И вот если x>0достаточно мало, то скорости изменения g>I и g>II>тоже будут малы. Обе у не будут сильно меняться с t, особен­но в сравнении с быстрыми вариациями, вызываемыми экспо­ненциальными членами. У этих экспоненциальных членов есть вещественные и мнимые части, которые колеблются с частотой w+w>0 или w-w>0. Члены с частотой w+w>0 колеблются вокруг среднего значения (нуля) очень быстро и поэтому не дадут сильного вклада в скорость изменения g. Значит, можно сде­лать весьма разумное приближение, заменив эти члены их средним значением, т. е. нулем. Их просто убирают и в каче­стве приближения берут

Но даже и оставшиеся члены с показателями, пропорциональ­ными (w-w>0), меняются быстро, если только w не близко к w>0. Только тогда правая сторона будет меняться достаточно мед­ленно для того, чтобы набежало большое число, пока интег­рируешь эти уравнения по t. Иными словами, при слабом электрическом поле изо всех частот представляют важность лишь те, которые близки к w>0.

При тех приближениях, которые были сделаны для того, чтобы получить (7.45), эти уравнения можно решить и точно; но работа эта все же трудоемкая, и мы отложим ее на другое время, когда обратимся к другой задаче того же типа. Пока же мы их просто решим приближенно, или, лучше сказать, найдем точное решение для случая идеального резонанса w=w>0 и приближенное — для частот близ резонанса.

§ 4. Нереходы прирезонансе

Первым рассмотрим случай идеального резонанса. Если положить w=w>0, то экспоненты в обоих уравнениях (7.45) станут равными единице, и мы просто получим

Если из этих уравнений исключить сперва g>I, а потом g>II, то мы увидим, что каждое из них удовлетворяет дифференциаль­ному уравнению простого гармонического движения

Общее решение этих уравнений может быть составлено из сину­сов и косинусов. Легко проверить, что решениями являются следующие выражения:

где а и bконстанты, которые надо еще определить так, чтобы они укладывались в ту или иную физическую ситуацию.