Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике | страница 13



Однако понятия бесконечного и инфинитезимального привели в начале XIX века к возникновению серьезных проблем в математике и в конце концов были полностью сметены с дороги в ходе большой реформы математики. В современный анализ эти концепции не допускаются.>{A1} Но они застряли в словарном запасе математиков, и в этой книге я нередко буду использовать слово «бесконечность». Надо только помнить, что оно представляет собой просто удобное и выразительное сокращение для более строгих понятий. Каждое математическое утверждение, где присутствует слово «бесконечность», можно переформулировать, не используя этого слова.

Когда мы говорим, что сумма гармонического ряда равна бесконечности, на самом деле имеется в виду, что если задаться сколь угодно большим числом S, то сумма гармонического ряда[3] рано или поздно превысит S. Видите? Никаких «бесконечностей». Во второй трети XIX века анализ был целиком переписан на языке подобного рода. Если какое-то выражение нельзя переписать таким образом, то оно не допускается в современную математику. Далекие от математики люди иногда меня спрашивают: «Раз вы знаете математику, ответьте на вопрос, который меня всегда занимал: сколько будет бесконечность разделить на бесконечность?» На это я могу ответить только: «Вы произносите слова, которые не имеют никакого смысла. Это не математическая фраза. Вы говорите о „бесконечности“ так, как если бы это было число. Но это не число. С таким же успехом вы могли бы спросить „Сколько будет истина разделить на красоту?“ Я ничего не могу по этому поводу сказать. Я умею делить только числа, а „бесконечность“, „истина“, „красота“ — это не числа».

Каково же тогда современное определение анализа? Для наших целей, как мне кажется, подойдет такое определение: это изучение пределов. Понятие предела лежит в основе анализа. Например, все дифференциальное и интегральное исчисление, составляющее наиболее значительную часть анализа, основано на понятии предела.

Рассмотрим такую числовую последовательность: >1/>1, >3/>2, >7/>5, >17/>12, >41/>29, >99/>70, >239/>169, >577/>408, >1393/>985, >3363/>2378, …. Каждая следующая дробь получена из предыдущей по простому правилу: новый знаменатель равен сумме старого числителя и старого знаменателя, а новый числитель равен сумме старого числителя и удвоенного старого знаменателя. Эта последовательность сходится к квадратному корню из числа 2. Например, возведение в квадрат числа >3363/>2378 дает