Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике | страница 12



/>4>1/>8 + >1/>16>1/>32 + >1/>64,

что на самом деле равно >43/>64. В действительности несложно доказать — и мы это сделаем в одной из последующих глав, — что если продолжать прибавлять и вычитать до бесконечности, то результат будет таким:

1 − >1/>2 + >1/>4>1/>8 + >1/>16>1/>32 + >1/>64>1/>128 + … = >2/>3. (1.2)

VI.

Теперь представим себе, что вместо линейки с делениями, обозначающими половины, четверти, восьмые, шестнадцатые и т.д. доли дюйма, в руках у нас линейка с делениями в третьи, девятые, двадцать седьмые, восемьдесят первые и т.д. доли. Другими словами, вместо половинок, половин от половин, половин от половин от половин… у нас нанесены трети, трети от третей, трети от третей от третей и т.д. Будем теперь упражняться в том же, что и раньше, — переносить карандаш сначала на дюйм, потом на треть дюйма, потом на одну девятую, потом на одну двадцать седьмую (рис. 1.11).

Рисунок 1.11.

Совсем несложно убедиться, что если продолжать такую операцию до бесконечности, то получится полная сумма в 1>1/>2 дюйма. Другими словами,

1 + >1/>3 + >1/>9 + >1/>27 + >1/>81 + >1/>243 + >1/>729 + >1/>2187 + … = 1>1/>2. (1.3)

А можно, конечно, и на нашей новой линейке менять направление движения: направо на дюйм, налево на треть, направо на одну девятую, налево на одну двадцать седьмую и т.д. (рис. 1.12).

Рисунок 1.12.

Соответствующая арифметика, возможно, не так уж прозрачна, но, как бы то ни было, результат имеет вид

1 − >1/>3 + >1/>9>1/>27 + >1/>81>1/>243 + >1/>729>1/>2187 + … = >3/>4. (1.4)

Итак, у нас имеются четыре сходящихся ряда: первый (1.1) подкрадывается слева все ближе и ближе к 2, второй (1.2) приближается к >2/>3 попеременно то слева, то справа, третий (1.3) подбирается слева все ближе и ближе к 1>1/>2, а четвертый (1.4) приближается к >3/>4 попеременно то слева, то справа. А перед этим мы познакомились с одним расходящимся рядом — гармоническим.


VII.

При чтении математической литературы полезно знать, в какой области математики вы находитесь — какую часть из этого обширного предмета изучаете. Та область, где обитают бесконечные ряды, в математике называется анализом[2]. Обычно считается, что анализ занимается изучением бесконечного, т.е. бесконечно большого и бесконечно малого (инфинитезимального). Когда Леонард Эйлер — о котором будет много всего сказано ниже — в 1748 году опубликовал свой превосходный первый учебник по анализу, он назвал его просто Introductio in analys in infinitorum — «Введение в анализ бесконечного».