Книга теорем 2 | страница 122
Локальность и есть база многополярности. В целом многополярность складывается из локализованных пространств поляризованных объектов, то есть объектов процесса мышления в том или ином виде ума.
Система аксиом
Любой мыслящий человек использует систему само собой разумеющихся правил. Само собой разумеющиеся правила бывают проявленные и не проявленные. Проявленные правила называют аксиомами и не доказывают. Непоколебимость этих правил делает ум последовательным. Совокупность проявленных правил составляет систему аксиом. Некоторые правила обычно не оговаривают. Например, «человек должен уметь мыслить». Чем меньше оговорённых правил, то есть аксиом, тем более «гибкий» ум.
Существуют различающиеся полярности А, В, С, … М.
Комментарий.
В линейном уме это правило как аксиому не выдвигают, а относят к само собой разумеющемуся. Например, «добро», «успех», «здоровье», «любовь», «друзья» и т. п. относятся к полярности «положительного»; «зло», «неудача», «болезнь», «ненависть», «враги» и т. п. относятся к полярности «отрицательного».
Полярности А, В, С,….М могут взаимодействовать между собой.
Комментарий.
Эта аксиома в линейном уме также не оговаривается как аксиома, а берётся как само собой разумеющееся. Например, «друзья моих врагов — мои враги».
Одной или нескольким взаимодействующим полярностям можно поставить в соответствие одну или несколько взаимодействующих полярностей.
Комментарий. Эта аксиома открывает следование и процесс. Кстати, в современной науке, логике, концепциях и обыденных высказываниях это так широко распространено, что без следствия не было бы ни одного изречения, теоремы, теории, концепции, открытия.
Полярности можно группировать.
Комментарий.
В двухполярном уме цивилизации Запада это не оговаривается, так как существует всего две поляризованных группы объектов. Например, кроме «положительного» и «отрицательного» поляризованных объектов не бывает. Количества, принадлежащие той или иной полярности, саму полярность не меняют. Например, +5 или +А; — 5 или — А.
Соответствие не нарушится, если один и тот же поляризованный объект войдёт во взаимодействие с исходным и поставленным ему в соответствие комплексом полярностей.
Комментарий.
Это правило широко распространено в современных исчислениях, логиках и высказываниях. Например, каждый из математики знает правило: «если к левой и правой частям равенства „прибавить“ или „отнять“, одно и то же число, то равенство от этого не нарушится». Или, к примеру, высказывание «друзья моих врагов — мои враги» не нарушится в полярном смысле, если добавить «успехи друзей моих врагов мне не в радость».