Книга теорем 2 - Василий Васильевич Ленский

Бесплатно читаем книгу Книга теорем 2 - Василий Васильевич Ленский без сокращений! Чтобы читать полную версию, не нужна регистрация на сайте. Помните, что чтение доступно как на компьютере, так и на Андроиде, Айфоне и любом другом телефоне.
Книга теорем 2 - Василий Васильевич Ленский

Василий Васильевич Ленский - Книга теорем 2 о чем книга


Загадочная и завораживающая книга, которая перенесет вас в мир историй и приключений, полный неожиданных поворотов и фантастических миров. Ее страницы наполняются живыми персонажами, каждый из которых несет свой неповторимый след в плетении сюжета. В этой книге вы найдете мудрость, вдохновение и множество важных уроков жизни. Взлетите на крыльях воображения и отправьтесь в увлекательное путешествие между ее строками, где мир становится вашим собственным волшебным приключением.

Читать онлайн бесплатно Книга теорем 2, автор Василий Васильевич Ленский


Рождение поляризованных объектов в области абстракций ума

«Никто ведь не сомневается в точности результатов, получаемых при вычислениях с мнимыми количествами, хотя они представляют собой только алгебраические формы иероглифы нелепых количеств» (Л. Карно).

Это высказывание Л.Карно очень ярко характеризует стихию математиков при получении поляризованных объектов. Издревле числа считались «действительными». Это связано с натуральными числами и арифметическими операциями над ними.

Важным этапом в развитии поляризации объектов было введение отрицательных чисел китайскими математиками за два века до н. э.

Отрицательные числа применяли в III веке древнегреческий математик Диофант, знавший уже правила действия над ними.

В VII веке эти числа уже подробно изучили индийские ученые, которые сравнивали такие числа с долгом.

В VIII веке было установлено, что квадратный корень из положительного числа имеет два значения — положительное и отрицательное, а из отрицательных чисел квадратный корень извлекать нельзя.

В XVI веке в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим корням ведет через невозможную операцию извлечения квадратного корня из отрицательного числа. Вслед за тем, как были решены уравнения 4-й степени, математики усиленно искали формулу для решения уравнения 5-й степени.

Руффини (Италия) на рубеже XVIII и XIX веков доказал, что буквенное уравнение пятой степени нельзя решить алгебраически; точнее: нельзя выразить его корень через буквенные величины a,b, c, d, e с помощью шести алгебраических действий (сложение, вычитание, умножение, деление, возведение в степень, извлечение корня).

В 1830 году Галуа (Франция) доказал, что никакое общее уравнение, степень которого больше чем 4, нельзя решить алгебраически. Тем не менее, всякое уравнение n-й степени имеет n корней, если рассматривать и комплексные числа. В этом математики были убеждены еще в XVII веке, основываясь на разборе многочисленных частных случаев. На рубеже XVIII и XIX веков упомянутая теорема была доказана Гауссом.

Итальянский алгебраист Дж. Кардано в 1545 г. предложил ввести числа новой природы. Он показал, что система уравнений, не имеющая решений во множестве действительных чисел, имеет решения с числами отрицательными, находящимися под квадратным корнем. Кардано называл такие величины «чисто отрицательными», и даже, «софистически отрицательными», считал их бесполезными и старался их не употреблять

Вы автор?
Жалоба
Все материалы размещаются на сайте его пользователями.
Если Ваша книга была опубликована без Вашего ведома и/или без Вашего согласия, пожалуйста, напишите нам, и мы в срочном порядке примем меры.