Книга теорем 2 | страница 121



3.1. Объёмная поляризация появляется, если между полярностями происходит «умножение», то есть такое взаимодействие, когда полярности видоизменяются. Например, привзаимодействии «красного», «зелёного» и «синего» цветов рождается «белый».

Взаимодействие между такими полярностями отличается их слиянием, суперпозицией так, что есть следствие в виде одной или нескольких полярностей.

3.2. В стихии исследований, за всю историю науки, были открыты «комплексные числа», «кватернионы», «гиперкомплексные числа», что, по сути, представляет «расщепление» двухполярных отношений.

Пространственная поляризация

4.1. Пространственная поляризация приходит как следствие синтеза законов ума и анализатора зрения. Примером тому геометрия и тригонометрия. Отношения в фигурах это отношение не зрения, а ума. Поэтому, например, закон Пифагора для катетов и гипотенузы, это яркое выражение ума, привнесённого в зрение.

4.2. Взяв пространственные восприятия зрением, ум может создавать целую науку, но уже смещаясь в законы и свойства ума. Примером тому служит тригонометрия.

4.3. Ещё меньше от зрения остаётся, например, в геометриях Лобачевского и Римана.

4.4. Многополярность вносит новые законы отношений. Поэтому сами объекты восприятий зрением, как и прежде, натуральные. Вид ума накладывает своё «восприятие» и свои результаты анализа отношений.

Локальность

Локальность определяется числом полярностей в заданном пространстве — локе. Объекты взаимодействий окрашиваются этими полярностями так, что взаимодействие объектов всецело принадлежит только выбранной локе. Именно локализация числа полярностей обуславливает законы отношений в таком пространстве.

Не существует законов отношений «универсальных», правил «вообще», «и так далее». Точно так же не существует «бесконечных» и «неопределённых» «множеств» как объектов мышления. Почему? Как только даются отношения между «неопределёнными», «бесконечными», «множествами» или «включение множеств», так тут же в силу вступают законы отношений. Вот они и принадлежат чётко к той или иной локе и тем самым «приземляют» все эти «множества» в конкретную локу — ту, законами которой вводятся «множества» в согласование. Вот тут-то слово «множества» и теряет смысл.

Это же самое можно сказать о группах, алгебрах, логиках. Каждое построение математики, логики и ума в целом будет принадлежать чётко той или иной локе. В пример можно привести «многозначные логики» Я.Лукасевича, Клини, Бочвара. Ни какой «многозначности» в этих логиках нет, так как законы отношений в них устанавливаются линейным и двухполярным умом этих авторов.