Логическая игра | страница 24



14. Какие суждения называются единичными? Приведите примеры.

15. Из каких суждений в нашей игре следует вывод о существовании их субъектов?

16. Если суждение содержит более двух признаков, то в некоторых случаях признаки можно переставлять и сдвигать от одного термина суждения к другому. В каких случаях это возможно? Приведите примеры.


Каждое из следующих четырёх суждений разбейте на два частных суждения.

17. Все тигры свирепые.

18. Все сваренные вкрутую яйца неполезные.

19. Я счастлив.

20. Джона нет дома.


21. Сформулируйте правило, позволяющее указывать, какими признаками обладают предметы, находящиеся в любой из клеток большой диаграммы.

22. Объясните, что означают логические термины «посылки», «заключение» и «силлогизм». Приведите примеры.

23. Объясните, что означают выражения «средний термин» и «средние термины».

24. Почему при изображении суждений на большой диаграмме удобнее все начинать с отрицательных суждений и лишь затем переходить к утвердительным суждениям?

25. Почему для нас как для логиков несущественно, ложны или истинны посылки?

26. Как решать силлогизмы, в которых суждение «Некоторые x суть y» надлежит понимать в смысле «Признаки x и y совместимы», а суждение «Ни один x не есть y» — в смысле «Признаки x и y несовместимы»?

27. Какие два типа логических ошибок вы знаете?

28. Как обнаружить ошибку в посылках?

29. Как обнаружить ошибку в заключении?

30. В некоторых случаях предлагаемое нам другими лицами заключение не совпадает с правильным, и тем не менее его нельзя назвать ошибочным. В каких случаях это возможно? Как мы называем подобные заключения?

§ 2. Суждения, представимые на половине малой диаграммы

На половине малой диаграммы

представьте с помощью черных и красных фишек следующие суждения.


1. Некоторые x суть не—y.

2. Все x суть не—y.

3. Некоторые x суть y, и некоторые x суть не—y.

4. Ни один x не существует.

5. Некоторые x существуют.

6. Ни один x не есть не—y.

7. Некоторые x суть не—y, и некоторые x существуют.


Пусть x=«судьи», y=«справедливые».

8. Ни один судья несправедлив.

9. Некоторые судьи несправедливы.

10. Все судьи справедливы.


Пусть x=«сливы», y=«полезные».

11. Некоторые сливы полезные.

12. Полезных слив не существует.

13. Некоторые сливы полезные, и некоторые сливы неполезные (вредны для здоровья).

14. Все сливы неполезные.


На половине малой диаграммы

изобразите следующие суждения.

Пусть y=«прилежные студенты», x=«учатся хорошо».

15. Ни один прилежный студент не учится плохо.