Фреймы для представления знаний | страница 82



СОВМЕСТИМОСТЬ И ПОЛНОТА. В процессе своей умственной деятельности человек критически оценивает имеющиеся у него планы и перечни целей, пересматривая свои знания и правила их использования. Некоторые из этих действий можно непосредственно внести в саму программу доказательства теорем и использовать их для последующего самоанализа, но человек в действительности хочет представлять их себе более естественным образом, в виде свода декларативных правил. Почему же тогда ученые стремятся, чтобы именно логистические системы выполняли эту работу? Действительная причина заключается в том, что такие системы весьма просты и элегантны; если бы они еще были и эффективны, было бы просто замечательно. Чаще указывают на другую причину, неверную по своей сути, именно, что подобные системы математически строги, поскольку они обладают свойствами:

(1) полноты, т.е., «можно доказать все истинные утверждения», и

(2) совместимы, т.е. «нельзя доказать ни одно ложное утверждение».

По всей видимости, люди часто не понимают, что полнота — это достоинство не такое уж редкое. Оно является тривиальным следствием любой процедуры исчерпывающего поиска, поэтому всякая система может быть переведена в категорию «полных», если к ней подсоединить любую другую полную систему и после этого чередовать этапы вычислений. Совместимость — понятие более тонкое, оно предполагает отсутствие противоречивости в наборах аксиом. Мне кажется, что в системах искусственного интеллекта подобного требования не следует придерживаться, ибо ни одна система естественного интеллекта не является полностью совместимой. Важно то, каким образом человек разрешает парадокс или находит выход из конфликтной ситуации, каким образом человек учится на своих и чужих ошибках, как распознает и отбрасывает всевозможные несоответствия.

Подобные неправильные представления привели к тому, что теорема неполноты Гёделя стимулировала появление совершенно беспочвенных утверждений о различиях между человеком и машиной. Никто, видимо, не заметил ее более «логичной» интерпретации, именно, что стремление к совместимости налагает определенные ограничения.

Конечно, есть и будут различия между людьми (которые доказуемо несовместимы) и машинами, конструкторы которых создавали их на основе этого принципа. Но для машин вовсе не является необходимым программирование на основе только совместимых логических систем. Те же философские рассуждения, которые выше не были нами приведены, но, тем не менее, подразумевались, использовали это ненужное допущение. (Полученные не так давно результаты, показывающие совместимость современной теории множеств, рассматриваются мною не как доказательство потенциальной возможности ее использования в системах искусственного интеллекта, а, наоборот, как подтверждение ее вероятной неприменимости для наших целей.)