Откуда мы знаем, что такое точка? | страница 4



Если просто нарисовать на листе бумаги точку фломастером или ручкой, то у ребенка может создаться впечатление, что точка – это небольшая клякса, поэтому добавляют: «Точка не имеет толщины, точка – это место». Замечательно, что дети легко понимают, что именно имеется в виду.

Приведу теперь еще одну цитату из вышеупомянутой статьи А. Маркова:

<<… известно, что основные нейрологические механизмы пространственного восприятия у людей и крыс примерно одинаковы, поэтому результаты этих исследований почти наверняка приложимы к людям.>>

Однако, если допустить, что представление о точкеявляется для человека врожденным, то, похоже, приходится признать, что врожденным является и (неявное) представление о свободной воле. Действительно, в этом случае врожденным должно быть и представление об окружающем пространстве как о континууме, состоящем из точек. Но что значит добраться из точки А в точку В по пути АВ? Это значит, что какова бы ни была произвольно взятая точка на этом пути, в ней придется побывать…

Замечание. Итак, “переменная” и ”бесконечность” – понятия , непосредственно базирующиеся на (по-видимому, врожденном) понятии “свобода воли”. А как обстоят дела с обычным (количественным) натуральным числом - неужели и оно опирается на понятие “свобода воли”? На наш взгляд , ответ на этот вопрос , как ни странно, положителен. Действительно, чтобы определить, например, (количественное) число “пять”, нам нужно мысленно соединить тоненькими ниточками пальцы руки с рассматриваемым набором предметов, устанавливая таким способом взаимно-однозначное соответствие между пальцами и этими предметами. Но эта процедура невозможна без представления о том, что ни одна мысленно проведенная нить не должна рваться и мы , путешествуя взглядом вдоль нее, должны побывать в произвольно взятой точке этой нити.

3. ТЕКСТОВЫЕ ЗАДАЧИ:
КАКОЙ МЕТОД ПРЕДПОЧЕСТЬ?

Цель этого параграфа – разобраться в том, при решении какого именно класса текстовых задач алгебраический метод должен в начальной школе уступать место арифметическому методу.

С точки зрения педагога арифметический метод хорош тем, что он одновременно активизирует и наглядно-образное мышление ученика, и его логику. Алгебраический метод обычно быстрее ведет к цели, но в значительно меньшей степени нацелен на развитие мышления в широком смысле этого слова.

Решая задачу арифметическим способом, младший школьник, как правило, оперирует именованными числами, что соответствует наиболее развитому у него типу мышления – наглядно-образному.