Откуда мы знаем, что такое точка? | страница 18
Объяснение кажущегося парадокса состоит в следующем.
В естественном языке мирно сосуществуют два различных по смыслу союза «если…, то…». Первый из них, который мы назовем логическим следованием, фактически утверждает:
«Если А, то одновременно с А имеет место и В».
Второй из упомянутых союзов, который мы назовем причинным следованием, в развернутом виде утверждает нечто иное:
«Если с некоторого момента А, то вскоре после этого имеет место и В».
Операция →, с которой мы имели дело всюду выше, представляла собой обобщение именно логического следования. Закон контрапозиции, справедливость которого установлена в формальной логике для операции →, вне всякого сомнения верен и для этого первого смыслового значения союза «если…, то…». При этом использование будущего времени при формулировке высказываний А и В никак не влияет на справедливость закона контрапозиции для операции логического следования. Например, одновременно истинны высказывания:
«Если число, которое ты задумаешь, будет делиться на 9, то оно будет делиться и на 3» и «Если число, которое ты задумаешь, не будет делиться на 3, то оно не будет делиться и на 9».
Отличие этой пары высказываний от (3), (3) очевидно!
Мы предоставляем читателю возможность самостоятельно разобраться в том, почему к парам высказываний (1), (1) и (2), (2) закон контрапозиции оказался применим, а также в том, как следует видоизменить этот закон, чтобы он стал применим и к высказываниям в будущем времени, содержащим операцию причинного следования.
Эффект, аналогичный кажущемуся нарушению закона контрапозиции, возникает и для логического союза «тогда и только тогда, когда…». Например, высказывание
«На улице станет светло тогда и только тогда, когда взойдет солнце», (4)
очевидно, истинно и имеет, на первый взгляд, структуру А↔В. Однако, попытка поменять А и В местами немедленно приводит к абсурду:
«Солнце взойдет тогда и только тогда, когда на улице станет светло». (4)
Любопытно, что высказывания, аналогичные (4), но сформулированные в прошедшем и настоящем времени, по-прежнему абсурдны (в отличие от (1) и (2)).
По просьбе авторов в одном из вузов среди первокурсников был проведен опрос:
Можно ли « распилить» куб на четыре куба?
(При этом куб, который требовалось «распилить» указанным образом, был изображен на доске в проекции Кабине; см. рис. 13.1. В этой проекции отрезки, перпендикулярные проекционной плоскости, после проецирования составляют ½ их действительной длины.)