Ответы на экзаменационные билеты по эконометрике | страница 46



31. Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными

Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными позволяют определить степень зависимости между результативной переменной и одной из факторных переменных при постоянстве остальных факторных переменных, включённых в модель.

Для модели множественной регрессии с тремя факторными переменными рассчитываются частные коэффициенты, как первого, так и второго порядка.

Общий вид модели трёхфакторной регрессии:

yi=β0+β1x1i+β2x2i+β3x3i+εi,

где yi – результативная переменная,

x1i – первая факторная переменная;

x2i – второй факторная переменная;

x3i – третья факторная переменная;

β0,β1,β2,β3 – неизвестные коэффициенты модели регрессии;

εi  – случайная ошибка модели регрессии.


Частные коэффициенты корреляции первого порядка для модели трёхфакторной регрессии строятся точно так же, как и для модели двухфакторной регрессии.

Частные коэффициенты корреляции второго порядка для модели трёхфакторной регрессии строятся следующим образом.

Частный коэффициент корреляции между результативной переменной у и факторной переменной х1 при постоянстве факторных переменных х2 и х3:

Частный коэффициент корреляции между результативной переменной у и факторной переменной х2 при постоянстве факторных переменных х1 и х3:

Частный коэффициент корреляции между результативной переменной у и факторной переменной х3 при постоянстве факторных переменных х1 и х1:

Частные коэффициенты корреляции второго порядка построены с использованием частных коэффициентов корреляции первого порядка.

Следовательно, частный коэффициент корреляции порядка t может быть построен через частный коэффициент корреляции (t-1) порядка. Формулы, построенные через указанную взаимосвязь, называются рекуррентными.

При анализе модели множественной регрессии с n факторными переменными, частный коэффициент корреляции (n-1) порядка рассчитывается по общей формуле:

Частные коэффициенты корреляции, вычисленные по рекуррентным формулам, изменяются в пределах от минус единицы до плюс единицы.

32. Построение частных коэффициентов корреляции для модели множественной регрессии через показатель остаточной дисперсии и коэффициент множественной детерминации

Помимо рекуррентных формул, которые используются для построения частных коэффициентов корреляции для моделей множественной регрессии, возможно также построение этих показателей с помощью показателя остаточной дисперсии.