Ответы на экзаменационные билеты по эконометрике | страница 45



Коэффициент частной корреляции между результативной переменной yi и факторной переменной xiпри постоянном значении факторной переменой ziрассчитывается по формуле:

Коэффициент частной корреляции между результативной переменной yi и факторной переменной ziпри постоянном значении факторной переменной xi рассчитывается по формуле:

Кроме влияния на результативную переменную, частный коэффициент корреляции позволяет рассчитать степень зависимости между факторными переменными.

Коэффициент частной корреляции между факторной переменной xi и факторной переменной ziпри постоянном значении результативной переменной yi рассчитывается по формуле:

Рассмотренные коэффициенты частной корреляции изменяются в пределах от минус единицы до единицы.

Частные коэффициенты корреляции также можно рассчитать через коэффициент множественной детерминации.

Коэффициент частной корреляции между результативной переменной yi и факторной переменной xi при постоянном значении факторной переменой zi:

где

– множественный коэффициент детерминации двухфакторной модели регрессии.

Данный коэффициент корреляции изменяется в пределах от нуля до единицы.

При проверке значимости частных коэффициентов корреляции выдвигается основная гипотеза о незначимости данных коэффициентов, например:

Н0:ryx/z=0.

Тогда конкурирующей или альтернативной гипотезой будет гипотеза вида:

Н1:ryx/z≠0.

Проверка выдвинутых гипотез осуществляется с помощью t-критерия Стьюдента.  Критическое значение t-критерия tкрит(а,n-h) определяется по таблице распределения Стьюдента, где а – уровень значимости, (n-h) – число степеней свободы. Для модели двухфакторной регрессии число степеней свободы равно (n-3).

Наблюдаемое значение t-критерия рассчитывается по формуле (на примере частного коэффициента корреляции между результативной переменной yi и факторной переменной xi при постоянном значении факторной переменой zi):

Если |tнабл|≤tкрит, то основная гипотеза не отклоняется, и частный коэффициент корреляции является незначимым. Следовательно, между переменными х и у при постоянном значении переменой z корреляционная связь отсутствует.

Если |tнабл|>tкрит,  то основная гипотеза отклоняется в пользу конкурирующей гипотезы с вероятностью совершения ошибки первого рода а. В этом случае можно считать, что между переменными х и у при постоянном значении переменной z существует корреляционная зависимость.

Частные коэффициенты корреляции позволяют сделать вывод об обоснованности включения переменной в модель регрессии. Если значение частного коэффициента корреляции мало или коэффициент незначим, то связь между данной факторной переменной и результативной переменной либо очень слаба, либо вовсе отсутствует, поэтому фактор можно исключить из модели без ущерба для её качества.