Ответы на экзаменационные билеты по эконометрике | страница 19
3) критерий, имеющий вид:
где g – это мера или вес, с которой отклонение (yi-f|xi,β|) входит в функционал F. В качестве примера веса g можно привести функцию Хубера, которая при малых значениях переменной х является квадратичной, а при больших значениях х – линейной:
где с – ограничения функции.
Данный критерий определения наилучших оценок коэффициентов модели регрессии β0…βn является попыткой объединения достоинств двух предыдущих критериев. Основное преимущество данного критерия заключается в том, что оценки неизвестных коэффициентов, найденные с его помощью, являются более устойчивыми к случайным выбросам в исходных данных, чем оценки, полученные методом наименьших квадратов.
Для определения оптимальных значений коэффициентов β0…βn необходимо минимизировать функционал F по данным параметрам:
Суть минимизации функционала F состоит в определении таких значений коэффициентов β0…βn, при которых сумма квадратов отклонений наблюдаемых значений результативной переменной у от теоретических значений ỹ с учётом заданных весов g была бы минимальной.
12. Оценивание неизвестных коэффициентов модели регрессии методом наименьших квадратов. Теорема Гаусса – Маркова
Определение коэффициентов модели регрессии осуществляется на третьем этапе схемы построения эконометрической модели. В результате этой процедуры рассчитываются оценки (приближенные значения) неизвестных коэффициентов спецификации модели.
Спецификация линейной эконометрической модели из изолированного уравнения с гомоскедастичными возмущениями имеет вид:
Рассмотрим метод наименьших квадратов на примере оценивания эконометрических моделей в виде моделей парной регрессии (изолированных уравнений с двумя переменными).
Если уравнение модели содержит две экономические переменные – эндогенную yiи предопределенную xi, то модель имеет вид:
Данная модель называется моделью линейной парной регрессии и содержит три неизвестных параметра:
β0 , β1 , σ. (3)
Предположим, что имеется выборка: (х1, y1), (х2, y2),… (хn , yn) (4)
Тогда в рамках исследуемой модели данные величины связаны следующим образом:
y1 = a0 + a1 * x1 + u1,
y2 = a0 + a1 * x2 + u2, (5)
…
yn= a0 + a1 * x n + u n.
Данная система называется системой уравнений наблюдения объекта в рамках исследуемой линейной модели или схемой Гаусса-Маркова.