Всё о метрологии | страница 23
определяют соответствующее значение Φ(t>p) интегральной функции нормированного нормального распределения. Затем по данным табл. П.3 приложения находят значение коэффициента t>p и вычисляют доверительное отклонение
где t>p определяется по заданной доверительной вероятности Р.
Полученный доверительный интервал, построенный с помощью среднего арифметического результатов n независимых повторных наблюдений, в √n раз короче интервала, вычисленного по результату одного наблюдения, хотя доверительная вероятность для них одинакова. Это говорит о том, что сходимость измерений растет пропорционально корню квадратному из числа наблюдений.
Половина длины нового доверительного интервала
называется доверительной границей погрешности результата измерений, а итог измерений записывается в виде
Теперь рассмотрим случай, когда распределение результатов наблюдений нормально, но их дисперсия неизвестна. В этих условиях пользуются отношением
называемым дробью Стьюдента. Входящие в нее величины
Плотность распределения этой дроби, впервые предсказанного Госсетом, писавшим под псевдонимом Стьюдент, выражается следующим уравнением:
где S(t, k) — плотность распределения Стьюдента. Величина k называется числом степеней свободы и равна n – 1. Вероятность того, что дробь Стьюдента в результате выполненных наблюдений примет некоторое значение в интервале (–t>p, +t>p), согласно выражению (8), вычисляется по формуле
или, поскольку S(t, k) является четной функцией аргумента t,
Подставив вместо дроби Стьюдента t ее выражение через
Величины t>p, вычисленные по формулам (40) и (41), были табулированы Фишером для различных значений доверительной вероятности Р в пределах 0.10–0.99 при k = n–1 = 1,2,…,30. В табл. П.5 приведены значения