Всё о метрологии | страница 19
где m>X — математическое ожидание, σ>X — среднеквадратическое отклонение результатов наблюдения. Распределением Лапласа следует пользоваться в тех случаях, когда точностные характеристики заранее неизвестны или нестабильны во времени.
Дифференциальная функция распределения случайных погрешностей получается подстановкой δ=x-m>X и σ>X=σ>δ в выражение (30):
Асимметрия распределения равна нулю, поскольку распределение симметрично относительно нуля, а эксцесс в соответствии с формулой (22) составляет
Таким образом, по сравнению с нормальным распределением (Ех = 0) равномерное распределение является более плосковершинным (Ех = -1.2), а распределение Лапласа — более островершинным (Ех = 3).
4.5. Точечные оценки истинного значения и среднеквадратического отклонения
Мы подошли к решению вопроса о том, как на основании полученной в эксперименте группы результатов наблюдений оценить истинное значение, т.е. найти результат измерений, как оценить его точность, т.е. меру его приближения к истинному значению.
Эта задача является частным случаем статистической задачи нахождения оценок параметров функции распределения случайной величины на основании выборки — ряда значений, принимаемых этой величиной в n независимых опытах. Оцениваемыми параметрами являются математическое ожидание и среднеквадратическое отклонение, поскольку только они входят в выражение для дифференциальных функций всех трех рассмотренных выше распределений. В уравнениях (25) и (30) для нормального распределения и распределения Лапласа эти параметры входят явно, а в уравнения (23) и (24) для равномерного распределения — не явно, поскольку
α = σ>δ√3, b = m>X+α = m>X+σ>X√3, a = m>X-α = m>X-σ>X√3
Оценку â параметра а назовем точечной, если она выражается одним числом. Любая точечная оценка, вычисленная на основании опытных данных, является их функцией и поэтому сама должна представлять собой случайную величину с распределением, зависящим от распределения исходной случайной величины, в том числе от самого оцениваемого параметра и от числа опытов n.
К точечным оценкам предъявляется ряд требований, определяющих их пригодность для описания самих параметров.
1. Оценка называется состоятельной, если при увеличении числа наблюдений она приближается (сходится по вероятности) к значению оцениваемого параметра.