Всё о метрологии | страница 18
где m>X — математическое ожидание и σ²>X — среднеквадратическое отклонение результатов наблюдений.
Учитывая, что при полном исключении систематических погрешностей x–m>X=δ и σ>X=σ>δ, для дифференциальной функции распределения случайной погрешности можно записать уравнение
Распределение, описываемое уравнениями (25) и (26), называется нормальным или распределением Гаусса.
На рис.8 изображены кривые нормального распределения случайных погрешностей для различных значений среднеквадратического отклонения (σ>1 > σ>2 > σ>3).
Из рисунка видно, что по мере увеличения среднеквадратического отклонения распределение все более и более расплывается, вероятность появления больших значений погрешностей возрастает, а вероятность меньших погрешностей сокращается, т.е. увеличивается рассеивание результатов наблюдений.
Вычислим вероятность попадания результата наблюдения в некоторый заданный интервал (x>1, x>2]:
Заменим переменные:
после чего получим следующее выражение для искомой вероятности:
Интегралы, стоящие в квадратных скобках, не выражаются в элементарных функциях, поэтому их вычисляют с помощью так называемого нормированного нормального распределения с дифференциальной функцией
В приложении (табл. П. 5 и П. 6) приведены значения дифференциальной функции нормированного нормального распределения, а также интегральной функции этого распределения, определяемой как
С помощью функции Ф(z) вероятность P(x>1 < X ≤ x>2) находят как
При использовании данной формулы следует иметь в виду тождество
Φ(z) ≡ 1-Φ(–z)
вытекающее непосредственно из определения функции Ф(z).
Широкое распространение нормального распределения погрешностей в практике измерений объясняется центральной предельной теоремой теории вероятностей, являющейся одной из самых замечательных математических теорем, в разработке которой принимали участие многие крупнейшие математики — Муавр, Лаплас, Гаусс, Чебышев и Ляпунов. Центральная предельная теорема утверждает, что распределение случайных погрешностей будет близко в нормальному всякий раз, когда результаты наблюдения формируются под влиянием большого числа независимо действующих факторов, каждый из которых оказывает лишь незначительное действие по сравнению с суммарным действием всех остальных.
3. Предположим, что результаты наблюдений распределены нормально, но их среднеквадратическое отклонение является величиной случайной, изменяющейся от опыта к опыту. Такое предположение более осторожное, чем предположение о неизменности σ