Всё о метрологии | страница 14



>1x>2] или [δ>1, δ>2].

В терминах интегральной функции распределения имеем:

P(x>1 < Xx>2) = P{-∞ < X ≤ x>2} – P{-∞ < Xx>1} = F>x(x>2) – F>x(x>1)

P>1 < δ ≤ δ>2) = P{-∞ < δ ≤ δ>2} – P{-∞ < δ ≤ δ>1} = F>2) – F>1)

т.е. вероятность попадания результата наблюдений или случайной погрешности в заданный интервал равна разности значений функции распределения на границах этого интервала.

Заменяя в полученных формулах интегральные функции распределения на соответствующие плотности распределения вероятностей согласно выражению (7), получим формулы для искомой вероятности в терминах дифференциальной функции распределения:

 

  (8)

 

  (9)

Таким образом, вероятность попадания результата наблюдения или случайной погрешности в заданный полуоткрытый интервал равна площади, ограниченной кривой распределения, осью абсцисс и перпендикулярами к ней на границах этого интервала. Необходимо отметить, что результаты наблюдений в значительной степени сконцентрированы вокруг истинного значения измеряемой величины и по мере приближения к нему элементы вероятности их появления возрастают. Это дает основание принять за оценку истинного значения измеряемой величины координату центра тяжести фигуры, образованной осью абсцисс и кривой распределения, и называемую математическим ожиданием результатов наблюдений:

 

  (10)

В заключение можно дать более строгое определение постоянной систематической и случайной погрешностей.

Систематической постоянной погрешностью называется отклонение математического ожидания результатов наблюдений от истинного значения измеряемой величины:

θ = M[X] – (11)

а случайной погрешностью — разность между результатом единичного наблюдения и математическим ожиданием результатов

δ = X – M[X]  (12)

В этих обозначениях истинное значение измеряемой величины составляет

Q = X – θ – δ  (13)

4.3. Моменты случайных погрешностей

Функция распределения является самым универсальным способом описания поведения случайных погрешностей. Однако для определения функций распределения необходимо проведение весьма кропотливых научных исследований и обширных вычислительных работ. Поэтому к такому способу описания случайных погрешностей прибегают иногда при исследовании принципиально новых мер и измерительных приборов.

Значительно чаще бывает достаточно охарактеризовать случайные погрешности с помощью ограниченного числа специальных величин, называемых моментами [3].

Начальным моментом n-го порядка результатов наблюдений называется интеграл вида