Всё о метрологии | страница 15
представляющий собой математическое ожидание степени X>n.
При n=1
т.е. первый начальный момент совпадает с математическим ожиданием результатов измерений.
Центральным моментом n-го порядка результатов наблюдений называется интеграл вида
Вычислим первый центральный момент:
Таким образом, первый центральный момент результатов наблюдений равен нулю. Важно отметить, что начальные и центральные моменты случайных погрешностей совпадают между собой и с центральными моментами результатов наблюдений, поскольку математическое ожидание случайных погрешностей равно нулю.
Особое значение наряду с математическим ожиданием результатов наблюдений имеет второй центральный момент, называемый дисперсией результатов наблюдений.
При n=2
Дисперсия D[X] случайной погрешности равна дисперсии результатов наблюдений и является характеристикой их рассеивания относительно математического ожидания.
Если математическое ожидание результатов наблюдений можно рассматривать в механической интерпретации как абсциссу центра тяжести фигуры, заключенной между кривой распределения и осью Ох, то дисперсия является аналогом момента инерции этой фигуры относительно вертикальной оси, проходящей через центр тяжести.
Дисперсия имеет размерность квадрата измеряемой величины, поэтому она не совсем удобна в качестве характеристики рассеивания. Значительно чаще в качестве последней используется положительное значение корня квадратного из дисперсии, называемое средним квадратическим отклонением результатов наблюдений:
С помощью среднеквадратического отклонения можно оценить вероятность того, что при однократном наблюдении случайная погрешность по абсолютной величине не превзойдет некоторой наперед заданной величины ε, т.е. вероятность P{|δ|}<ε. Для этого рассмотрим формулу, известную как неравенство Чебышева:
Полагая ε=3σ>X, можно найти вероятность того, что результат однократного наблюдения отличается от истинного значения на величину, большую утроенного среднеквадратического отклонения, т.е. вероятность того, что случайная погрешность окажется больше 3σ>X:
Вероятность того, что погрешность измерения не превысит 3σ>X, составит соответственно
P{|δ|<ε} ≥ 1–0.11 = 0.89
Неравенство Чебышева дает только нижнюю границу для вероятности P{|δ|}<ε, меньше которой она не может быть ни при каком распределении. Обычно P{|δ|}<3σ значительно больше 0.89. Так, например, в случае нормального распределения погрешностей эта вероятность составляет 0.9973.