Всё о метрологии | страница 13



Ответ на эти вопросы можно получить, используя при метрологической обработке результатов измерения методы математической статистики, имеющей дело именно со случайными величинами.

4.2. Описание случайных погрешностей с помощью функций распределения

Рассмотрим результат наблюдений Х за постоянной физической величиной Q как случайную величину, принимающую различные значения Z, в различных наблюдениях за ней. Значения X>i будем называть результатами отдельных наблюдений.

Наиболее универсальный способ описания случайных величин заключается в отыскании их интегральных или дифференциальных функций распределения [1].

Под интегральной функцией распределения результатов наблюдений понимается зависимость вероятности того, что результат наблюдения X>i в i-м опыте окажется меньшим некоторого текущего значения х, от самой величины х:

F>x(x) = P(X>ix)  (4)

Здесь и в дальнейшем большие буквы используются для обозначения случайных величин, а маленькие — значений, принимаемых случайными величинами. Поскольку функция распределения вероятности представляет собой вероятность, то она удовлетворяет следующим свойствам:

• 0 ≤ F>x(x) ≤ 1 при x ∈ (–∞, +∞),

F>x(–∞) = 0, F>x(+∞) = 1,

F>x(x) — неубывающая функция x,

• P(x>1 < X < x>2) = F>X(x>2) – F>X(x>1).

На рис.2 показаны примеры функций распределения вероятности.

Более наглядным является описание свойств результатов наблюдений и случайных погрешностей с помощью дифференциальной функции распределения, иначе называемой плотностью распределения вероятностей:

f(x) = dF>X(x)/dx  (5)

Физический смысл f(x) состоит в том, что произведение f(x)dx представляет вероятность попадания случайной величины Х в интервал от х до х + dx , т.е.

f(x)dx = P(xX ≤ x+dx)  (6)

Свойства плотности распределения вероятности:

 

  — вероятность достоверного события равна 1;

иными словами, площадь, заключенная между кривой дифференциальной функции распределения и осью абсцисс, равна единице;

 

  — вероятность попадания случайной величины в интервал от x>1 до x>2.

От дифференциальной функции распределения легко перейти к интегральной путем интегрирования:

 

  (7)

Размерность плотности распределения вероятностей, как это следует из формулы (7), обратна размерности измеряемой величины, поскольку сама вероятность — величина безразмерная.

Используя понятия функций распределения, легко получить выражения для вероятностей того, что результат наблюдений Х или случайная погрешность δ примет при проведении измерения некоторое значение в интервале [