Как постепенно дошли люди до настоящей арифметики | страница 34



Еще пиѳагорейцы выдѣлили треугольныя числа и квадратныя: треугольное число то, которое представляетъ собою половину произведенія 2 сосѣднихъ чиселъ, напр., 6 будетъ треугольнымъ числомъ, потому что его можно образовать умноженіемъ 3 на 4 и дѣленіемъ на 2; вотъ примѣры треугольныхъ чиселъ: 10=>4·5/>2, 15=>5·6/>2, 21=>6·7/>2, 28=>7·8/>2, 36=>8·9/>2 и т. д.

Ясно, почему они заслужили такое названіе: они могутъ выражать собой площадь треугольника. Что значитъ квадратное число, легко догадаться: то число, которое составлено изъ 2-хъ равныхъ множителей; квадратныя числа слѣдующія: 1, 4, 9, 16, 25, 36, 49 и т. д.

Кромѣ того, у грековъ были «совершенныя числа». Подъ этимъ именемъ разумѣлись такія, которыя равны суммѣ всѣхъ своихъ дѣлителей, считая единицу; самый легкій примѣръ совершеннаго числа —28, потому что 28=1+2+4+7+14; другимъ примѣромъ можетъ служить число 496; если сложить всѣхъ его множителей, считая и единицу, то въ суммѣ получимъ опять 496; множители слѣдующіе: 1, 2, 4, 8, 16, 31, 62, 124, 248.

Отъ совершенныхъ чиселъ греки перешли къ такъ наз. содружественнымъ. Два числа называются содружественными тогда, когда каждое изъ нихъ равно суммѣ дѣлителей другого; лучшимъ примѣромъ такихъ чиселъ могутъ служить 220 и 284, у перваго изъ нихъ дѣлители 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110 даютъ вмѣстѣ 284, а у второго дѣлители 1, 2, 4, 71, 142 даютъ въ суммѣ число 220. Въ теоріи содружественныхъ чиселъ не обошлось безъ курьеза, опять проявилась та же наклонность къ таинственному и волшебному. Нѣкій Мадштрити, умершій въ Мадридѣ въ 1007 году по Р. X., въ своемъ сочиненіи «О цѣляхъ существующаго» пытается увѣрить, что содружественныя числа могутъ сыграть роль талисмана или приворотнаго зелья; а способъ для этого очень простой: надо написать на 2 бумажкахъ, на одной число 220, на другой—284, сжечь ихъ и пепелъ выпить съ водой, большее число самому, а меньшее тому, кого желательно къ себѣ расположить. Другой авторитетный человѣкъ, нѣкто Ибн-халдунъ, подтверждаетъ, что дѣйствительно эти числа имѣютъ значеніе талисмановъ, и что многіе на дѣлѣ это испытали и увѣрились; и онъ самъ, Ибн-халдунъ, на своемъ опытѣ въ этомъ же увѣрился.

Все, изложенное выше, принадлежитъ, главпымъ образомъ, грекамъ, потому что всѣ эти подраздѣленія и всѣ формулы разрабатывались въ школѣ Пиѳагора и уже отъ позднѣйшихъ его учениковъ перешли къ арабамъ. Римляне не заносились такъ далеко въ своей фантазіи и предпочитали быть поближе къ практикѣ и наглядности; вычисляли они, какъ выше уже сказано, все больше по пальцамъ и даже ухитрялись замѣчать на пальцахъ довольно большія числа; при этомъ единицы отмѣчались пальцами, а десятки до сотни—суставами пальцевъ, именно: