Путевые заметки рассеянного магистра | страница 36
— Олег — экономист! — сострил президент.
Олег поклонился:
— Ничего не имею против такого звания. — Но проблемой Штейнера занимаются всё-таки не экономисты, а математики, — сказал я. — Есть в математике такой раздел — вариационное исчисление. Очень трудный, между прочим, раздел. Вариационное исчисление исследует многочисленные варианты решений и находит при этом самый выгодный. Ясно?
— Ясно-то ясно, — озабоченно отозвался президент, — но ни о каком исследовании вариантов не может быть и речи. На это уйдёт слишком много времени, а между тем Пончик и Кузя…
— Ладно, — сжалилась Таня, — так и быть, поторопимся. Сева, ты, кажется, хотел разобраться в вопросе о возведении в четвёртую степень?
— Сейчас, сейчас, — начал Сева нарочито медленно (он не мог отказать себе в удовольствии поддразнить президента). — Леди и джентльмены! Как вы помните, благородный рыцарь ордена Рассеянных магистров пытался в уме возвести в четвёртую степень некое покрытое тайной число. И хотя число было основательно засекречено, проницательная Единичка немедленно обнаружила, что ответ у Магистра неверен. Вы спросите, как она догадалась? Охотно открою её секрет. Магистр получил в ответ число… неважно теперь какое, важно то, что оно оканчивалось двойкой. Но ни одна четвёртая степень числа на двойку оканчиваться не может! Так же, впрочем, как и на тройку, и на семёрку, и на восьмёрку, и на девятку. Четвёртая степень любого числа оканчивается либо на 1, либо на 6, а ещё — на 5 и на 0. При этом прошу вас отметить, что подобным капризным образом ведут себя не только четвёртые степени, но и все степени, кратные четырём, — восьмая, двенадцатая, шестнадцатая и так далее!
— Вот здо́рово! — воодушевился Нулик, сразу позабыв о Пончике и Кузе. — И другие степени тоже ведут себя по-особому?
— Без всякого сомнения, — величественно ответствовал Сева. — Степени своенравны, но любят порядок и никогда от него не отступают. Вот, например, все пятые степени оканчиваются той же цифрой, что и их основание. Например, 2 в пятой степени равно 32; 4 в пятой степени — 1024 и так далее. Тому же правилу подчиняются девятая, тринадцатая, семнадцатая и многие другие степени. Арифметика педантична. Не то что Магистр. Вот почему он так часто ошибается. Я кончил!
— Уже? — искренне огорчился президент. — Жаль, так было интересно.
— А Пончик? — спросил Сева. — Уж не хочешь ли ты сказать, как древний философ: «Пончик мне друг, но математика дороже»?