Путевые заметки рассеянного магистра | страница 35



— Здравствуйте! — перебил президент. — Сто лет назад телефонов не было.

— Телефонов не было, — спокойно согласился Олег, — а проблема была. И не просто проблема, а проблема Штейнера.

— Что за Штейнер?

— Якоб Штейнер — замечательный швейцарский математик. Мальчишкой он пас коров на альпийских пастбищах и только девятнадцати лет научился читать и писать, а потом взял да стал профессором Берлинского университета, автором многих трудов по математике. Есть среди этих трудов и такая задача: как найти внутри треугольника такую точку, чтобы сумма расстояний от неё до всех трех вершин треугольника была наименьшей? Но ведь именно этим и занимались мальчики, о которых рассказывает Магистр. К сожалению, они не знали, что Штейнер давно разрешил их спор, да ещё для двух различных случаев. Первый случай, когда любой из углов треугольника меньше 120 градусов, второй — когда один из углов равен 120 градусам.

Тут оратор предупредил, что не станет давать никаких доказательств, а просто покажет, как находить нужную точку. А всякие Фомы неверующие (здесь Олег искоса взглянул на Нулика) могут проверить это по любой книжке, где говорится о проблеме Штейнера. Вот хотя бы по книжке Ку́ранта и Ро́ббинса «Что такое математика».

— Так вот, — продолжал Олег, — если любой из углов треугольника меньше 120 градусов, то искомая точка находится внутри треугольника.

— Как её искать? — спросил Нулик.

— Надо найти такую точку, чтобы из неё все три стороны треугольника были видны под одним и тем же углом в 120 градусов.

— Чепуха! — фыркнул президент. — Как это стороны могут быть видны под углом?

— Очень просто, — возразил Олег, не обратив никакого внимания на убийственную иронию Нулика. — Если из точки провести две прямые к концам какого-нибудь отрезка, то угол между этими прямыми и называется углом, под которым виден этот отрезок. Итак, если один из углов треугольника равен 120 градусам, то искомая точка будет как раз вершиной этого угла. Вот почему Единичка сказала, что предложение Магистра неверно. Она соединила на карте точки, где находятся дома А, Б и В, и увидела, что в полученном треугольнике каждый из углов меньше 120 градусов.

— Понятно, — кивнул Сева. — Но если мальчиков будет не три, а четыре или ещё больше? Где надо будет установить станцию тогда?

— Вопрос интересный, — сказал Олег, — он имеет большое экономическое значение. Ведь и телефонные провода, и трубы, и дороги надо проводить так, чтобы на них ушло как можно меньше материала и труда.