Моделирование канала коротковолновой радиосвязи | страница 11



>t>) случайного процесса и установим его связь со среднеквадратическим отклонением σ исходного случайного процесса.

В формуле (60) под знаком корня квадратного имеются две случайные величины, которые являются квадратичными функциями случайного процесса. Функция плотности вероятности для нормального закона имеет вид [4]:




(62)



Функция плотности вероятности для нормального закона при квадратичной функции случайного процесса приведена в [1] и для

u

(

t

)=

x

>2

(

t

) и, соответственно, будет иметь вид:



(63)

при a=0 функция будет иметь вид:




(64)

Математическое ожидание этой квадратичной функции m>u вычислим как первый момент случайной величины:





(65)

и после подстановки пределов получаем:




(66)

Тогда математическое ожидание огибающей случайного процесса, то есть функции E(t), будет определяться:



(67)

В данном случае математическое ожидание огибающей будет и ее медианным значением.

Дисперсию квадратичной функции D>u вычислим как второй момент случайной величины:



(68)

и после подстановки пределов получаем:




(69)

Тогда среднеквадратическое отклонение квадратичной функции будет равно:




(70)

Дисперсия огибающей случайного процесса, то есть функции E(t), будет определяться:




(71)

Среднеквадратическое отклонение огибающей случайного процесса от медианного значения будет вычисляться по формуле:




(72)

Обратим внимание на то, что для случайной величины, распределенной по нормальному закону с математическим ожиданием m>x=0, параметры огибающей вычисляются по одной и той же формуле:



Это означает, что в шуме, моделируемом посредством основного и сопряженного процесса, формула (57), соотношение

всегда будет равно единице. Поэтому этим способом также невозможно смоделировать случайный процесс с требуемыми параметрами огибающей.


Третий способ.

Рассмотрим еще один способ формирования помехи посредством формирования двух процессов: процесса, соответствующего среднеквадратическому отклонению от медианного значения огибающей, и процесса, соответствующего медианному значению огибающей.

Для этого сформируем случайные величины x(t) огибающей случайного процесса X(t), распределенные по нормальному закону с параметрами: m>x=0 и σ>x. Сформируем случайные величины y(t) случайного процесса Y(t), распределенного по равномерному закону в котором случайная величина может принимать только два значения: y(t)=± m>y. Вычислим случайные величины z(t)=x(t)+y(t), генерируемого процесса Z(t). Для формирования случайных величин x(t) в MATLAB можно сгенерировать случайную величину x