Бог и Стивен Хокинг: Чей это дизайн? | страница 34
Часть мира Конвея (помните, что он считается бесконечным во всех направлениях) может быть смоделирована на компьютере, так что можно наблюдать, что происходит, когда поколение сменяет поколение. Например, можно наблюдать, как по диагонали экрана ползут “планеры".[69]
Этот мир с его простыми законами имеет большое притяжение для математиков и сыграл важную роль в развитии важной теории клеточных автоматов. Конвей и его ученики, как указывает Хокинг, показали, что существуют сложные начальные конфигурации, которые самовоспроизводятся в соответствии с законами. Некоторые из них являются так называемыми Универсальными машинами Тьюринга, которые в принципе могут выполнять любые вычисления, которые можно было бы выполнить на компьютере. Конфигурации живых и мертвых квадратов в мире Конвея, которые способны сделать это, были вычислены как имеющие огромные размеры – состоящие из триллионов квадратов.[70]
Как математик, я нахожу работу Конвея увлекательной. Слушать, как он оживляет математику, было одним из лучших моментов моего опыта кембриджских лекций. Однако здесь меня интересует цель Хокинга в использовании этой аналогии:
Пример "Игры жизни" Конвея показывает, что даже очень простой набор законов может порождать сложные черты, сходные с особенностями жизни. Должно быть много сводов законов с этим свойством. Что выделяет фундаментальные законы (в отличие от очевидных законов), которые управляют нашей Вселенной? Как и во вселенной Конвея, законы нашей вселенной определяют эволюцию системы, заданной состоянием в любой момент времени. В мире Конвея мы являемся создателями – мы выбираем начальное состояние Вселенной, указывая объекты и их положение в начале игры.