Проблемы Гильберта (100 лет спустя) | страница 3



содержится в множестве Х>2, т. е. все элементы множества Х>1 являются также элементами Х>2, то говорят, что Х>1 — подмножество Х>2, и кратко записывают так: Х>1 ⊂ Х>2.

Множество конечно, если в нём конечное число элементов. Множества могут быть как конечными (например, множество учеников в классе), так и бесконечными (например, N {в оригинале ℕ - не уверен, что символ отображают все читалки } — множество всех натуральных чисел {1,2,3,...}). Множества, элементами которых являются числа, называются числовыми.

Пусть X и Y — два множества. Говорят, что между этими множествами установлено взаимно однозначное соответствие, если все элементы этих двух множеств разбиты на пары вида (х,у), где х ∈ X, у ∈ Y, причём каждый элемент из X и каждый элемент из Y участвует ровно в одной паре.

Пример, когда все девочки и мальчики на танцевальном вечере разбиваются на пары, и есть пример взаимно однозначного соответствия между множеством девочек и множеством мальчиков.

Множества, между которыми можно установить взаимно однозначное соответствие, называются эквивалентными или равномощными. Два конечных множества эквивалентны тогда и только тогда, когда в них одинаковое количество элементов. Поэтому естественно считать, что если одно бесконечное множество эквивалентно другому, то в нём «столько же» элементов. Однако, опираясь на такое определение эквивалентности, можно получить весьма неожиданные свойства бесконечных множеств.

Бесконечные множества


Рассмотрим любое конечное множество и любое его собственное (непустое и не совпадающее с ним самим) подмножество. Тогда элементов в подмножестве меньше, чем в самом множестве, т. е. часть меньше целого.

Обладают ли бесконечные множества таким свойством? И может ли иметь смысл утверждение, что в одном бесконечном

- 6 -

 множестве «меньше» элементов, чем в другом, тоже бесконечном? Ведь про два бесконечных множества мы можем пока только сказать, эквивалентны они или нет. А существуют ли вообще неэквивалентные бесконечные множества?

Далее мы последовательно ответим на все эти вопросы. А для начала приведём забавную фантастическую историю из книги Н. Я. Виленкина «Рассказы о множествах».* Действие происходит в далёком будущем, когда жители разных галактик могут встречаться друг с другом. Поэтому для всех путешествующих по космосу построена огромная гостиница, протянувшаяся через несколько галактик.

В этой гостинице бесконечно много номеров (комнат), но, как и положено, все комнаты пронумерованы, и для любого натурального числа n есть комната с этим номером.