PIC-микроконтроллеры. Все, что вам необходимо знать | страница 10
Как бы там ни было, единственной причиной, по которой мы не оставляем отрицательные числа в дополнительном коде, является непривычность для нас такого представления чисел.
Разумеется, использование дополнительного кода для представления отрицательных значений применимо и к двоичным числам. Причем, простота инвертирования (0 —> 1, 1 —> 0) делает этот метод очень привлекательным. Обратимся к приведенному выше примеру:
И опять же отрицательные числа следует оставлять в дополнительном коде (2’s complement)[17]. Обратите внимание, что операция преобразования в дополнительный код является обратимой, т. е.
дополнительный код <=> прямой код.
При работе с десятичными числами для обозначения положительных и отрицательных чисел используются знаки «+» и «—» соответственно. В системе же с двумя состояниями мы можем оперировать только единицами и нулями. Тем не менее, взглянув на последний пример, можно получить ключ к решению этой проблемы. Как уже было сказано, отрицательное значение получается в результате заема в старший разряд числа. Так что мы можем использовать этот разряд в качестве знакового бита (sign bit), причем 0 будет эквивалентен знаку «+», а 1 — знаку «—». Таким образом, число Ь’11000101’ будет соответствовать значению —59, а Ь’00111011’ — значению +59 (в примерах знаковый бит выделен полужирным шрифтом). Преимущество такого представления заключается в том, что при любых арифметических операциях с ним можно обращаться так же, как и с обычным битом. При этом результат операции будет иметь верный знак:
Из примера видно, что если отрицательное число представлено в дополнительном коде, то нам не нужно изобретать аппаратный «вычитатель», поскольку прибавление отрицательного числа эквивалентно вычитанию положительного. Другими словами, А — В = А + (—В). Более того, если числа будут записаны в дополнительном коде, результаты всех последующих арифметических операций также будут в дополнительном коде.
С арифметическими операциями над отрицательными числами, представленными в дополнительном коде, связаны две проблемы. Первая из этих проблем — переполнение (overflow). Она заключается в том, что при сложении двух положительных или двух отрицательных чисел может возникнуть переполнение в знаковом бите, например:
а) Сумма двух положительных чисел б) Сумма двух отрицательных чисел получается отрицательной получается положительной
В примере (а) результат сложения (+8) + (+11) равен —13. В данном случае произошло переполнение из четвертого значащего бита в знаковый (в действительности число 10011b = 19 является корректным результатом). В примере (