Парадоксы науки | страница 17
Увы. скоро, очень скоро обнаружились сначала частные, а позднее фундаментальные изъяны. Но здесь в разговор вмешивается логика.
Дело в том, что основные понятия теории множеств допускали логическое описание. Доказательство возможности существования математических объектов также получало логическое оправдание. Мы не будем вникать в детали. Отметим лишь следующее. Многие исследователи, учитывая только что сказанное, задались целью свести математику к логике, то есть выразить исходные математические понятия и операции логически. Казалось даже, что эта программа — ее назвали программой логицизма — близка к завершению. Немецкий логик и математик Г. Фреге уже заканчивал и частью издал трехтомный труд «Обоснования арифметики», венчающий усилия логицистов, как вдруг разразилась «арифметическая катастрофа».
В 1902 году молодой английский логик Б. Рассел обратил внимание Г. Фреге на противоречивость его исходных позиций. Г. Фреге использовал такие понятия, что это вело к парадоксу. Попробуем в нем разобраться.
Мы уже говорили, что множество (класс) есть совокупность объектов, которые и составляют элементы данного множества. Поскольку само множество тоже объект, как и его элементы, то вставал вопрос, является ли множество элементом самого себя, то есть принадлежит ли оно к числу элементов собственного класса?
В этом пункте начиналось интересное.
Есть два вида классов. Одни содержат себя в качестве собственного элемента. Например, класс списков, Его элементами являются конкретные списки. Скажем, список книг какой-либо библиотеки, список студентов некоторой группы и т. д. Но и сам класс оказывается в числе своих элементов, потому что список списков есть также список. Аналогично и каталог каталогов есть каталог.
Однако подобных классов очень немного. Обычно же классы не содержат себя в качестве собственного элемента. Возьмем, например, множество «человек».
Его составляют конкретные люди: Петров, Сидоров, Аристотель. Любой человек, молодой или в возрасте, мужчина или женщина, студент или профессор — каждый из них является элементом множества «человек».
Само же это множество элементом собственного класса стать не может, ибо нет человека вообще, человека как такового. Это не более чем абстракция, понятие, которое отвлечено от всех конкретных признаков и существует только в идеальном виде как мысленная конструкция.
А теперь образуем класс из всех вот таких классов, которые не включают себя в качестве своего элемента: «человек», «дерево», «планета» и т. п. Образовали. Попытаемся также определить, будет ли он, этот новый класс, входить элементом в свое же множество или не будет? Здесь и возникал парадокс. Если мы включим его в свой класс, то его надо выключить, потому что сюда, по условию, входят только те множества, которые не являются собственными элементами. Но если выключим, тогда надо включить, поскольку он будет удовлетворять условию: он же в этом случае не является элементом своего множества.