Гильберт. Основания математики | страница 37




Физика слишком сложна для физиков.

Давид Гильберт


Парадигматические уравнения в частных производных — это три уравнения, полученные в области математической физики: уравнение волн, уравнение тепла и уравнение Лапласа.

Прежде чем рассмотреть последнее, введем обозначение, которое чрезвычайно упрощает его запись: лапласианом функции u = u(х,y,z,t) от пространственных координат и времени называют сумму следующих производных относительно х,y,z:

∆u = ∂²u/∂x² + ∂²u/∂y² + ∂²u/∂z²

Эту группу частных дифференциалов лапласианом назвал Джеймс Клерк Максвелл (1831-1879), хотя обозначение заглавной греческой буквой дельта восходит к трактату 1833 года.

В данных обстоятельствах ∆u = 0 — это уравнение Лапласа, или уравнение непрерывности, выражающее, что идеальный флюид, в котором нет завихрений, неразрушим. Это уравнение математически кодирует прописную истину: если флюид несжимаем, из сколь угодно малого объема в момент времени должно выйти столько же жидкости, сколько ее содержится в нем. Однако французский математик и физик Пьер-Симон Лаплас (1749-1827) обнаружил его в небесной механике, изучая гравитационный потенциал, то есть функцию, измеряющую гравитационную силу, с которой тело — какой бы формы оно ни было — притягивает внешнюю точечную частицу. В результате это уравнение Лапласа также получило название уравнения потенциала. Как уже можно догадаться, один из гениальных вкладов Гильберта в анализ был связан со строгим решением этого уравнения в частных производных.


УРАВНЕНИЕ ВОЛН И УРАВНЕНИЕ ТЕПЛА

Уравнение волн, которое описывает распространение волн звука или света, а также физических волн, производимых колеблющейся струной или мембраной, следующее:

∂²u/∂t² = c²∆u .

В свою очередь, уравнение тепла, которое регулирует распространение тепла (то, как оно движется из зон, где температура выше, в зоны, где она ниже), соответствует следующему виду:

∂u/∂t = k∆u .

Оба уравнения кажутся обманчиво похожими, за исключением того, что в первом вместо первой производной появляется вторая производная относительно времени. Эта тонкая математическая разница имеет чрезвычайное значение для физики: уравнение волн обратимо — в том смысле, что оно остается неизменным, если мы изменим направление течения времени. Математически: если мы заменим t на -t, уравнение останется прежним, поскольку при двойном дифференцировании знаки отрицания взаимно уничтожаются. Следовательно, уравнение не упорядочивает решения с течением времени, в связи с чем можно восстановить информацию о прошлом (по этой причине мы используем световые или звуковые сигналы для общения). Уравнение тепла, наоборот, необратимо (если заменить t на -t, мы не получим то же самое уравнение). Распространение тепла ориентировано темпорально, оно зависит от оси времени. Эта необратимость проявляется в том, что уравнение упорядочивает решения стечением времени, поэтому обычно невозможно восстановить информацию о прошлом (решение, соответствующее пику тепла, в итоге смягчается таким образом, что через некоторое время невозможно узнать, где и как возник взрыв или пожар, поскольку тепло распространилось по всему пространству).